Metamath Proof Explorer


Theorem abelthlem7a

Description: Lemma for abelth . (Contributed by Mario Carneiro, 8-May-2015)

Ref Expression
Hypotheses abelth.1 φ A : 0
abelth.2 φ seq 0 + A dom
abelth.3 φ M
abelth.4 φ 0 M
abelth.5 S = z | 1 z M 1 z
abelth.6 F = x S n 0 A n x n
abelth.7 φ seq 0 + A 0
abelthlem6.1 φ X S 1
Assertion abelthlem7a φ X 1 X M 1 X

Proof

Step Hyp Ref Expression
1 abelth.1 φ A : 0
2 abelth.2 φ seq 0 + A dom
3 abelth.3 φ M
4 abelth.4 φ 0 M
5 abelth.5 S = z | 1 z M 1 z
6 abelth.6 F = x S n 0 A n x n
7 abelth.7 φ seq 0 + A 0
8 abelthlem6.1 φ X S 1
9 8 eldifad φ X S
10 oveq2 z = X 1 z = 1 X
11 10 fveq2d z = X 1 z = 1 X
12 fveq2 z = X z = X
13 12 oveq2d z = X 1 z = 1 X
14 13 oveq2d z = X M 1 z = M 1 X
15 11 14 breq12d z = X 1 z M 1 z 1 X M 1 X
16 15 5 elrab2 X S X 1 X M 1 X
17 9 16 sylib φ X 1 X M 1 X