Metamath Proof Explorer


Theorem abeq2w

Description: Version of abeq2 using implicit substitution, which requires fewer axioms. (Contributed by GG and AV, 18-Sep-2024)

Ref Expression
Hypothesis abeq2w.1 x = y φ ψ
Assertion abeq2w A = x | φ y y A ψ

Proof

Step Hyp Ref Expression
1 abeq2w.1 x = y φ ψ
2 dfcleq A = x | φ y y A y x | φ
3 df-clab y x | φ y x φ
4 1 sbievw y x φ ψ
5 3 4 bitri y x | φ ψ
6 5 bibi2i y A y x | φ y A ψ
7 6 albii y y A y x | φ y y A ψ
8 2 7 bitri A = x | φ y y A ψ