Metamath Proof Explorer


Theorem abexd

Description: Conditions for a class abstraction to be a set, deduction form. (Contributed by AV, 19-Apr-2025)

Ref Expression
Hypotheses abexd.1 φ ψ x A
abexd.2 φ A V
Assertion abexd φ x | ψ V

Proof

Step Hyp Ref Expression
1 abexd.1 φ ψ x A
2 abexd.2 φ A V
3 1 ex φ ψ x A
4 3 alrimiv φ x ψ x A
5 abss x | ψ A x ψ x A
6 4 5 sylibr φ x | ψ A
7 2 6 ssexd φ x | ψ V