Metamath Proof Explorer


Theorem abexex

Description: A condition where a class abstraction continues to exist after its wff is existentially quantified. (Contributed by NM, 4-Mar-2007)

Ref Expression
Hypotheses abexex.1 A V
abexex.2 φ x A
abexex.3 y | φ V
Assertion abexex y | x φ V

Proof

Step Hyp Ref Expression
1 abexex.1 A V
2 abexex.2 φ x A
3 abexex.3 y | φ V
4 df-rex x A φ x x A φ
5 2 pm4.71ri φ x A φ
6 5 exbii x φ x x A φ
7 4 6 bitr4i x A φ x φ
8 7 abbii y | x A φ = y | x φ
9 1 3 abrexex2 y | x A φ V
10 8 9 eqeltrri y | x φ V