Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)
Ref | Expression | ||
---|---|---|---|
Hypotheses | abrexex2.1 | ||
abrexex2.2 | |||
Assertion | abexssex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abrexex2.1 | ||
2 | abrexex2.2 | ||
3 | df-rex | ||
4 | velpw | ||
5 | 4 | anbi1i | |
6 | 5 | exbii | |
7 | 3 6 | bitri | |
8 | 7 | abbii | |
9 | 1 | pwex | |
10 | 9 2 | abrexex2 | |
11 | 8 10 | eqeltrri |