Metamath Proof Explorer


Theorem abexssex

Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)

Ref Expression
Hypotheses abrexex2.1 A V
abrexex2.2 y | φ V
Assertion abexssex y | x x A φ V

Proof

Step Hyp Ref Expression
1 abrexex2.1 A V
2 abrexex2.2 y | φ V
3 df-rex x 𝒫 A φ x x 𝒫 A φ
4 velpw x 𝒫 A x A
5 4 anbi1i x 𝒫 A φ x A φ
6 5 exbii x x 𝒫 A φ x x A φ
7 3 6 bitri x 𝒫 A φ x x A φ
8 7 abbii y | x 𝒫 A φ = y | x x A φ
9 1 pwex 𝒫 A V
10 9 2 abrexex2 y | x 𝒫 A φ V
11 8 10 eqeltrri y | x x A φ V