Description: Existence of a class abstraction with an existentially quantified expression. Both x and y can be free in ph . (Contributed by NM, 29-Jul-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abrexex2.1 | ||
| abrexex2.2 | |||
| Assertion | abexssex |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abrexex2.1 | ||
| 2 | abrexex2.2 | ||
| 3 | df-rex | ||
| 4 | velpw | ||
| 5 | 4 | anbi1i | |
| 6 | 5 | exbii | |
| 7 | 3 6 | bitri | |
| 8 | 7 | abbii | |
| 9 | 1 | pwex | |
| 10 | 9 2 | abrexex2 | |
| 11 | 8 10 | eqeltrri |