Metamath Proof Explorer


Theorem abl32

Description: Commutative/associative law for Abelian groups. (Contributed by Stefan O'Rear, 10-Apr-2015) (Revised by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablcom.b B = Base G
ablcom.p + ˙ = + G
abl32.g φ G Abel
abl32.x φ X B
abl32.y φ Y B
abl32.z φ Z B
Assertion abl32 φ X + ˙ Y + ˙ Z = X + ˙ Z + ˙ Y

Proof

Step Hyp Ref Expression
1 ablcom.b B = Base G
2 ablcom.p + ˙ = + G
3 abl32.g φ G Abel
4 abl32.x φ X B
5 abl32.y φ Y B
6 abl32.z φ Z B
7 ablcmn G Abel G CMnd
8 3 7 syl φ G CMnd
9 1 2 cmn32 G CMnd X B Y B Z B X + ˙ Y + ˙ Z = X + ˙ Z + ˙ Y
10 8 4 5 6 9 syl13anc φ X + ˙ Y + ˙ Z = X + ˙ Z + ˙ Y