Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
|
2 |
|
ablsubadd.p |
|
3 |
|
ablsubadd.m |
|
4 |
|
ablgrp |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
simp2l |
|
7 |
|
simp2r |
|
8 |
1 2
|
grpcl |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
simp3l |
|
11 |
|
simp3r |
|
12 |
1 2
|
grpcl |
|
13 |
5 10 11 12
|
syl3anc |
|
14 |
1 2
|
grpcl |
|
15 |
5 10 7 14
|
syl3anc |
|
16 |
1 3
|
grpsubrcan |
|
17 |
5 9 13 15 16
|
syl13anc |
|
18 |
|
simp1 |
|
19 |
1 2 3
|
ablsub4 |
|
20 |
18 6 7 10 7 19
|
syl122anc |
|
21 |
|
eqid |
|
22 |
1 21 3
|
grpsubid |
|
23 |
5 7 22
|
syl2anc |
|
24 |
23
|
oveq2d |
|
25 |
1 3
|
grpsubcl |
|
26 |
5 6 10 25
|
syl3anc |
|
27 |
1 2 21
|
grprid |
|
28 |
5 26 27
|
syl2anc |
|
29 |
20 24 28
|
3eqtrd |
|
30 |
1 2 3
|
ablsub4 |
|
31 |
18 10 11 10 7 30
|
syl122anc |
|
32 |
1 21 3
|
grpsubid |
|
33 |
5 10 32
|
syl2anc |
|
34 |
33
|
oveq1d |
|
35 |
1 3
|
grpsubcl |
|
36 |
5 11 7 35
|
syl3anc |
|
37 |
1 2 21
|
grplid |
|
38 |
5 36 37
|
syl2anc |
|
39 |
31 34 38
|
3eqtrd |
|
40 |
29 39
|
eqeq12d |
|
41 |
17 40
|
bitr3d |
|