Metamath Proof Explorer


Theorem ablfac1a

Description: The factors of ablfac1b are of prime power order. (Contributed by Mario Carneiro, 26-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B = Base G
ablfac1.o O = od G
ablfac1.s S = p A x B | O x p p pCnt B
ablfac1.g φ G Abel
ablfac1.f φ B Fin
ablfac1.1 φ A
Assertion ablfac1a φ P A S P = P P pCnt B

Proof

Step Hyp Ref Expression
1 ablfac1.b B = Base G
2 ablfac1.o O = od G
3 ablfac1.s S = p A x B | O x p p pCnt B
4 ablfac1.g φ G Abel
5 ablfac1.f φ B Fin
6 ablfac1.1 φ A
7 id p = P p = P
8 oveq1 p = P p pCnt B = P pCnt B
9 7 8 oveq12d p = P p p pCnt B = P P pCnt B
10 9 breq2d p = P O x p p pCnt B O x P P pCnt B
11 10 rabbidv p = P x B | O x p p pCnt B = x B | O x P P pCnt B
12 1 fvexi B V
13 12 rabex x B | O x p p pCnt B V
14 11 3 13 fvmpt3i P A S P = x B | O x P P pCnt B
15 14 adantl φ P A S P = x B | O x P P pCnt B
16 15 fveq2d φ P A S P = x B | O x P P pCnt B
17 eqid x B | O x P P pCnt B = x B | O x P P pCnt B
18 eqid x B | O x B P P pCnt B = x B | O x B P P pCnt B
19 4 adantr φ P A G Abel
20 eqid P P pCnt B = P P pCnt B
21 eqid B P P pCnt B = B P P pCnt B
22 1 2 3 4 5 6 20 21 ablfac1lem φ P A P P pCnt B B P P pCnt B P P pCnt B gcd B P P pCnt B = 1 B = P P pCnt B B P P pCnt B
23 22 simp1d φ P A P P pCnt B B P P pCnt B
24 23 simpld φ P A P P pCnt B
25 23 simprd φ P A B P P pCnt B
26 22 simp2d φ P A P P pCnt B gcd B P P pCnt B = 1
27 22 simp3d φ P A B = P P pCnt B B P P pCnt B
28 1 2 17 18 19 24 25 26 27 ablfacrp2 φ P A x B | O x P P pCnt B = P P pCnt B x B | O x B P P pCnt B = B P P pCnt B
29 28 simpld φ P A x B | O x P P pCnt B = P P pCnt B
30 16 29 eqtrd φ P A S P = P P pCnt B