Metamath Proof Explorer


Theorem ablfac1c

Description: The factors of ablfac1b cover the entire group. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfac1.b B = Base G
ablfac1.o O = od G
ablfac1.s S = p A x B | O x p p pCnt B
ablfac1.g φ G Abel
ablfac1.f φ B Fin
ablfac1.1 φ A
ablfac1c.d D = w | w B
ablfac1.2 φ D A
Assertion ablfac1c φ G DProd S = B

Proof

Step Hyp Ref Expression
1 ablfac1.b B = Base G
2 ablfac1.o O = od G
3 ablfac1.s S = p A x B | O x p p pCnt B
4 ablfac1.g φ G Abel
5 ablfac1.f φ B Fin
6 ablfac1.1 φ A
7 ablfac1c.d D = w | w B
8 ablfac1.2 φ D A
9 1 dprdssv G DProd S B
10 9 a1i φ G DProd S B
11 ssfi B Fin G DProd S B G DProd S Fin
12 5 9 11 sylancl φ G DProd S Fin
13 hashcl G DProd S Fin G DProd S 0
14 12 13 syl φ G DProd S 0
15 hashcl B Fin B 0
16 5 15 syl φ B 0
17 1 2 3 4 5 6 ablfac1b φ G dom DProd S
18 dprdsubg G dom DProd S G DProd S SubGrp G
19 17 18 syl φ G DProd S SubGrp G
20 1 lagsubg G DProd S SubGrp G B Fin G DProd S B
21 19 5 20 syl2anc φ G DProd S B
22 breq1 w = q w B q B
23 22 7 elrab2 q D q q B
24 8 sseld φ q D q A
25 23 24 syl5bir φ q q B q A
26 25 impl φ q q B q A
27 1 2 3 4 5 6 ablfac1a φ q A S q = q q pCnt B
28 1 fvexi B V
29 28 rabex x B | O x p p pCnt B V
30 29 3 dmmpti dom S = A
31 30 a1i φ dom S = A
32 17 31 dprdf2 φ S : A SubGrp G
33 32 ffvelrnda φ q A S q SubGrp G
34 17 adantr φ q A G dom DProd S
35 30 a1i φ q A dom S = A
36 simpr φ q A q A
37 34 35 36 dprdub φ q A S q G DProd S
38 19 adantr φ q A G DProd S SubGrp G
39 eqid G 𝑠 G DProd S = G 𝑠 G DProd S
40 39 subsubg G DProd S SubGrp G S q SubGrp G 𝑠 G DProd S S q SubGrp G S q G DProd S
41 38 40 syl φ q A S q SubGrp G 𝑠 G DProd S S q SubGrp G S q G DProd S
42 33 37 41 mpbir2and φ q A S q SubGrp G 𝑠 G DProd S
43 39 subgbas G DProd S SubGrp G G DProd S = Base G 𝑠 G DProd S
44 38 43 syl φ q A G DProd S = Base G 𝑠 G DProd S
45 12 adantr φ q A G DProd S Fin
46 44 45 eqeltrrd φ q A Base G 𝑠 G DProd S Fin
47 eqid Base G 𝑠 G DProd S = Base G 𝑠 G DProd S
48 47 lagsubg S q SubGrp G 𝑠 G DProd S Base G 𝑠 G DProd S Fin S q Base G 𝑠 G DProd S
49 42 46 48 syl2anc φ q A S q Base G 𝑠 G DProd S
50 44 fveq2d φ q A G DProd S = Base G 𝑠 G DProd S
51 49 50 breqtrrd φ q A S q G DProd S
52 27 51 eqbrtrrd φ q A q q pCnt B G DProd S
53 6 sselda φ q A q
54 14 nn0zd φ G DProd S
55 54 adantr φ q A G DProd S
56 simpr φ q q
57 ablgrp G Abel G Grp
58 1 grpbn0 G Grp B
59 4 57 58 3syl φ B
60 hashnncl B Fin B B
61 5 60 syl φ B B
62 59 61 mpbird φ B
63 62 adantr φ q B
64 56 63 pccld φ q q pCnt B 0
65 53 64 syldan φ q A q pCnt B 0
66 pcdvdsb q G DProd S q pCnt B 0 q pCnt B q pCnt G DProd S q q pCnt B G DProd S
67 53 55 65 66 syl3anc φ q A q pCnt B q pCnt G DProd S q q pCnt B G DProd S
68 52 67 mpbird φ q A q pCnt B q pCnt G DProd S
69 68 adantlr φ q q A q pCnt B q pCnt G DProd S
70 26 69 syldan φ q q B q pCnt B q pCnt G DProd S
71 pceq0 q B q pCnt B = 0 ¬ q B
72 56 63 71 syl2anc φ q q pCnt B = 0 ¬ q B
73 72 biimpar φ q ¬ q B q pCnt B = 0
74 eqid 0 G = 0 G
75 74 subg0cl G DProd S SubGrp G 0 G G DProd S
76 ne0i 0 G G DProd S G DProd S
77 19 75 76 3syl φ G DProd S
78 hashnncl G DProd S Fin G DProd S G DProd S
79 12 78 syl φ G DProd S G DProd S
80 77 79 mpbird φ G DProd S
81 80 adantr φ q G DProd S
82 56 81 pccld φ q q pCnt G DProd S 0
83 82 nn0ge0d φ q 0 q pCnt G DProd S
84 83 adantr φ q ¬ q B 0 q pCnt G DProd S
85 73 84 eqbrtrd φ q ¬ q B q pCnt B q pCnt G DProd S
86 70 85 pm2.61dan φ q q pCnt B q pCnt G DProd S
87 86 ralrimiva φ q q pCnt B q pCnt G DProd S
88 16 nn0zd φ B
89 pc2dvds B G DProd S B G DProd S q q pCnt B q pCnt G DProd S
90 88 54 89 syl2anc φ B G DProd S q q pCnt B q pCnt G DProd S
91 87 90 mpbird φ B G DProd S
92 dvdseq G DProd S 0 B 0 G DProd S B B G DProd S G DProd S = B
93 14 16 21 91 92 syl22anc φ G DProd S = B
94 hashen G DProd S Fin B Fin G DProd S = B G DProd S B
95 12 5 94 syl2anc φ G DProd S = B G DProd S B
96 93 95 mpbid φ G DProd S B
97 fisseneq B Fin G DProd S B G DProd S B G DProd S = B
98 5 10 96 97 syl3anc φ G DProd S = B