Description: Lemma for ablfac1b . Satisfy the assumptions of ablfacrp. (Contributed by Mario Carneiro, 26-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablfac1.b | |
|
| ablfac1.o | |
||
| ablfac1.s | |
||
| ablfac1.g | |
||
| ablfac1.f | |
||
| ablfac1.1 | |
||
| ablfac1.m | |
||
| ablfac1.n | |
||
| Assertion | ablfac1lem | |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablfac1.b | |
|
| 2 | ablfac1.o | |
|
| 3 | ablfac1.s | |
|
| 4 | ablfac1.g | |
|
| 5 | ablfac1.f | |
|
| 6 | ablfac1.1 | |
|
| 7 | ablfac1.m | |
|
| 8 | ablfac1.n | |
|
| 9 | 6 | sselda | |
| 10 | prmnn | |
|
| 11 | 9 10 | syl | |
| 12 | ablgrp | |
|
| 13 | 1 | grpbn0 | |
| 14 | 4 12 13 | 3syl | |
| 15 | hashnncl | |
|
| 16 | 5 15 | syl | |
| 17 | 14 16 | mpbird | |
| 18 | 17 | adantr | |
| 19 | 9 18 | pccld | |
| 20 | 11 19 | nnexpcld | |
| 21 | 7 20 | eqeltrid | |
| 22 | pcdvds | |
|
| 23 | 9 18 22 | syl2anc | |
| 24 | 7 23 | eqbrtrid | |
| 25 | nndivdvds | |
|
| 26 | 18 21 25 | syl2anc | |
| 27 | 24 26 | mpbid | |
| 28 | 8 27 | eqeltrid | |
| 29 | 21 28 | jca | |
| 30 | 7 | oveq1i | |
| 31 | pcndvds2 | |
|
| 32 | 9 18 31 | syl2anc | |
| 33 | 7 | oveq2i | |
| 34 | 8 33 | eqtri | |
| 35 | 34 | breq2i | |
| 36 | 32 35 | sylnibr | |
| 37 | 28 | nnzd | |
| 38 | coprm | |
|
| 39 | 9 37 38 | syl2anc | |
| 40 | 36 39 | mpbid | |
| 41 | prmz | |
|
| 42 | 9 41 | syl | |
| 43 | rpexp1i | |
|
| 44 | 42 37 19 43 | syl3anc | |
| 45 | 40 44 | mpd | |
| 46 | 30 45 | eqtrid | |
| 47 | 8 | oveq2i | |
| 48 | 18 | nncnd | |
| 49 | 21 | nncnd | |
| 50 | 21 | nnne0d | |
| 51 | 48 49 50 | divcan2d | |
| 52 | 47 51 | eqtr2id | |
| 53 | 29 46 52 | 3jca | |