Metamath Proof Explorer


Theorem ablfac2

Description: Choose generators for each cyclic group in ablfac . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses ablfac.b B = Base G
ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
ablfac.1 φ G Abel
ablfac.2 φ B Fin
ablfac2.m · ˙ = G
ablfac2.s S = k dom w ran n n · ˙ w k
Assertion ablfac2 φ w Word B S : dom w C G dom DProd S G DProd S = B

Proof

Step Hyp Ref Expression
1 ablfac.b B = Base G
2 ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 ablfac.1 φ G Abel
4 ablfac.2 φ B Fin
5 ablfac2.m · ˙ = G
6 ablfac2.s S = k dom w ran n n · ˙ w k
7 wrdf s Word C s : 0 ..^ s C
8 7 ad2antlr φ s Word C G dom DProd s G DProd s = B s : 0 ..^ s C
9 8 fdmd φ s Word C G dom DProd s G DProd s = B dom s = 0 ..^ s
10 fzofi 0 ..^ s Fin
11 9 10 eqeltrdi φ s Word C G dom DProd s G DProd s = B dom s Fin
12 8 ffdmd φ s Word C G dom DProd s G DProd s = B s : dom s C
13 12 ffvelcdmda φ s Word C G dom DProd s G DProd s = B k dom s s k C
14 oveq2 r = s k G 𝑠 r = G 𝑠 s k
15 14 eleq1d r = s k G 𝑠 r CycGrp ran pGrp G 𝑠 s k CycGrp ran pGrp
16 15 2 elrab2 s k C s k SubGrp G G 𝑠 s k CycGrp ran pGrp
17 16 simplbi s k C s k SubGrp G
18 13 17 syl φ s Word C G dom DProd s G DProd s = B k dom s s k SubGrp G
19 1 subgss s k SubGrp G s k B
20 18 19 syl φ s Word C G dom DProd s G DProd s = B k dom s s k B
21 16 simprbi s k C G 𝑠 s k CycGrp ran pGrp
22 13 21 syl φ s Word C G dom DProd s G DProd s = B k dom s G 𝑠 s k CycGrp ran pGrp
23 22 elin1d φ s Word C G dom DProd s G DProd s = B k dom s G 𝑠 s k CycGrp
24 eqid Base G 𝑠 s k = Base G 𝑠 s k
25 eqid G 𝑠 s k = G 𝑠 s k
26 24 25 iscyg G 𝑠 s k CycGrp G 𝑠 s k Grp x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
27 26 simprbi G 𝑠 s k CycGrp x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
28 23 27 syl φ s Word C G dom DProd s G DProd s = B k dom s x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
29 eqid G 𝑠 s k = G 𝑠 s k
30 29 subgbas s k SubGrp G s k = Base G 𝑠 s k
31 18 30 syl φ s Word C G dom DProd s G DProd s = B k dom s s k = Base G 𝑠 s k
32 28 31 rexeqtrrdv φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n G 𝑠 s k x = Base G 𝑠 s k
33 18 ad2antrr φ s Word C G dom DProd s G DProd s = B k dom s x s k n s k SubGrp G
34 simpr φ s Word C G dom DProd s G DProd s = B k dom s x s k n n
35 simplr φ s Word C G dom DProd s G DProd s = B k dom s x s k n x s k
36 5 29 25 subgmulg s k SubGrp G n x s k n · ˙ x = n G 𝑠 s k x
37 33 34 35 36 syl3anc φ s Word C G dom DProd s G DProd s = B k dom s x s k n n · ˙ x = n G 𝑠 s k x
38 37 mpteq2dva φ s Word C G dom DProd s G DProd s = B k dom s x s k n n · ˙ x = n n G 𝑠 s k x
39 38 rneqd φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = ran n n G 𝑠 s k x
40 31 adantr φ s Word C G dom DProd s G DProd s = B k dom s x s k s k = Base G 𝑠 s k
41 39 40 eqeq12d φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k ran n n G 𝑠 s k x = Base G 𝑠 s k
42 41 rexbidva φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k x s k ran n n G 𝑠 s k x = Base G 𝑠 s k
43 32 42 mpbird φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k
44 ssrexv s k B x s k ran n n · ˙ x = s k x B ran n n · ˙ x = s k
45 20 43 44 sylc φ s Word C G dom DProd s G DProd s = B k dom s x B ran n n · ˙ x = s k
46 45 ralrimiva φ s Word C G dom DProd s G DProd s = B k dom s x B ran n n · ˙ x = s k
47 oveq2 x = w k n · ˙ x = n · ˙ w k
48 47 mpteq2dv x = w k n n · ˙ x = n n · ˙ w k
49 48 rneqd x = w k ran n n · ˙ x = ran n n · ˙ w k
50 49 eqeq1d x = w k ran n n · ˙ x = s k ran n n · ˙ w k = s k
51 50 ac6sfi dom s Fin k dom s x B ran n n · ˙ x = s k w w : dom s B k dom s ran n n · ˙ w k = s k
52 11 46 51 syl2anc φ s Word C G dom DProd s G DProd s = B w w : dom s B k dom s ran n n · ˙ w k = s k
53 simprl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : dom s B
54 9 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k dom s = 0 ..^ s
55 54 feq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : dom s B w : 0 ..^ s B
56 53 55 mpbid φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : 0 ..^ s B
57 iswrdi w : 0 ..^ s B w Word B
58 56 57 syl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B
59 53 fdmd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k dom w = dom s
60 59 eleq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w j dom s
61 60 biimpa φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w j dom s
62 simprr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom s ran n n · ˙ w k = s k
63 simpl k = j n k = j
64 63 fveq2d k = j n w k = w j
65 64 oveq2d k = j n n · ˙ w k = n · ˙ w j
66 65 mpteq2dva k = j n n · ˙ w k = n n · ˙ w j
67 66 rneqd k = j ran n n · ˙ w k = ran n n · ˙ w j
68 fveq2 k = j s k = s j
69 67 68 eqeq12d k = j ran n n · ˙ w k = s k ran n n · ˙ w j = s j
70 69 rspccva k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j = s j
71 62 70 sylan φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j = s j
72 12 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s : dom s C
73 72 ffvelcdmda φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s s j C
74 71 73 eqeltrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j C
75 61 74 syldan φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w ran n n · ˙ w j C
76 fveq2 k = j w k = w j
77 76 oveq2d k = j n · ˙ w k = n · ˙ w j
78 77 mpteq2dv k = j n n · ˙ w k = n n · ˙ w j
79 78 rneqd k = j ran n n · ˙ w k = ran n n · ˙ w j
80 79 cbvmptv k dom w ran n n · ˙ w k = j dom w ran n n · ˙ w j
81 6 80 eqtri S = j dom w ran n n · ˙ w j
82 75 81 fmptd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S : dom w C
83 simprl φ s Word C G dom DProd s G DProd s = B G dom DProd s
84 83 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G dom DProd s
85 62 59 raleqtrrdv φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = s k
86 mpteq12 dom w = dom s k dom w ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = k dom s s k
87 59 85 86 syl2anc φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = k dom s s k
88 6 87 eqtrid φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S = k dom s s k
89 dprdf G dom DProd s s : dom s SubGrp G
90 84 89 syl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s : dom s SubGrp G
91 90 feqmptd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s = k dom s s k
92 88 91 eqtr4d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S = s
93 84 92 breqtrrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G dom DProd S
94 92 oveq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd S = G DProd s
95 simplrr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd s = B
96 94 95 eqtrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd S = B
97 82 93 96 3jca φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S : dom w C G dom DProd S G DProd S = B
98 58 97 jca φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B S : dom w C G dom DProd S G DProd S = B
99 98 ex φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B S : dom w C G dom DProd S G DProd S = B
100 99 eximdv φ s Word C G dom DProd s G DProd s = B w w : dom s B k dom s ran n n · ˙ w k = s k w w Word B S : dom w C G dom DProd S G DProd S = B
101 52 100 mpd φ s Word C G dom DProd s G DProd s = B w w Word B S : dom w C G dom DProd S G DProd S = B
102 df-rex w Word B S : dom w C G dom DProd S G DProd S = B w w Word B S : dom w C G dom DProd S G DProd S = B
103 101 102 sylibr φ s Word C G dom DProd s G DProd s = B w Word B S : dom w C G dom DProd S G DProd S = B
104 1 2 3 4 ablfac φ s Word C G dom DProd s G DProd s = B
105 103 104 r19.29a φ w Word B S : dom w C G dom DProd S G DProd S = B