Metamath Proof Explorer


Theorem ablfac2

Description: Choose generators for each cyclic group in ablfac . (Contributed by Mario Carneiro, 28-Apr-2016)

Ref Expression
Hypotheses ablfac.b B = Base G
ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
ablfac.1 φ G Abel
ablfac.2 φ B Fin
ablfac2.m · ˙ = G
ablfac2.s S = k dom w ran n n · ˙ w k
Assertion ablfac2 φ w Word B S : dom w C G dom DProd S G DProd S = B

Proof

Step Hyp Ref Expression
1 ablfac.b B = Base G
2 ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 ablfac.1 φ G Abel
4 ablfac.2 φ B Fin
5 ablfac2.m · ˙ = G
6 ablfac2.s S = k dom w ran n n · ˙ w k
7 wrdf s Word C s : 0 ..^ s C
8 7 ad2antlr φ s Word C G dom DProd s G DProd s = B s : 0 ..^ s C
9 8 fdmd φ s Word C G dom DProd s G DProd s = B dom s = 0 ..^ s
10 fzofi 0 ..^ s Fin
11 9 10 eqeltrdi φ s Word C G dom DProd s G DProd s = B dom s Fin
12 8 ffdmd φ s Word C G dom DProd s G DProd s = B s : dom s C
13 12 ffvelrnda φ s Word C G dom DProd s G DProd s = B k dom s s k C
14 oveq2 r = s k G 𝑠 r = G 𝑠 s k
15 14 eleq1d r = s k G 𝑠 r CycGrp ran pGrp G 𝑠 s k CycGrp ran pGrp
16 15 2 elrab2 s k C s k SubGrp G G 𝑠 s k CycGrp ran pGrp
17 16 simplbi s k C s k SubGrp G
18 13 17 syl φ s Word C G dom DProd s G DProd s = B k dom s s k SubGrp G
19 1 subgss s k SubGrp G s k B
20 18 19 syl φ s Word C G dom DProd s G DProd s = B k dom s s k B
21 16 simprbi s k C G 𝑠 s k CycGrp ran pGrp
22 13 21 syl φ s Word C G dom DProd s G DProd s = B k dom s G 𝑠 s k CycGrp ran pGrp
23 22 elin1d φ s Word C G dom DProd s G DProd s = B k dom s G 𝑠 s k CycGrp
24 eqid Base G 𝑠 s k = Base G 𝑠 s k
25 eqid G 𝑠 s k = G 𝑠 s k
26 24 25 iscyg G 𝑠 s k CycGrp G 𝑠 s k Grp x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
27 26 simprbi G 𝑠 s k CycGrp x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
28 23 27 syl φ s Word C G dom DProd s G DProd s = B k dom s x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
29 eqid G 𝑠 s k = G 𝑠 s k
30 29 subgbas s k SubGrp G s k = Base G 𝑠 s k
31 18 30 syl φ s Word C G dom DProd s G DProd s = B k dom s s k = Base G 𝑠 s k
32 31 rexeqdv φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n G 𝑠 s k x = Base G 𝑠 s k x Base G 𝑠 s k ran n n G 𝑠 s k x = Base G 𝑠 s k
33 28 32 mpbird φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n G 𝑠 s k x = Base G 𝑠 s k
34 18 ad2antrr φ s Word C G dom DProd s G DProd s = B k dom s x s k n s k SubGrp G
35 simpr φ s Word C G dom DProd s G DProd s = B k dom s x s k n n
36 simplr φ s Word C G dom DProd s G DProd s = B k dom s x s k n x s k
37 5 29 25 subgmulg s k SubGrp G n x s k n · ˙ x = n G 𝑠 s k x
38 34 35 36 37 syl3anc φ s Word C G dom DProd s G DProd s = B k dom s x s k n n · ˙ x = n G 𝑠 s k x
39 38 mpteq2dva φ s Word C G dom DProd s G DProd s = B k dom s x s k n n · ˙ x = n n G 𝑠 s k x
40 39 rneqd φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = ran n n G 𝑠 s k x
41 31 adantr φ s Word C G dom DProd s G DProd s = B k dom s x s k s k = Base G 𝑠 s k
42 40 41 eqeq12d φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k ran n n G 𝑠 s k x = Base G 𝑠 s k
43 42 rexbidva φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k x s k ran n n G 𝑠 s k x = Base G 𝑠 s k
44 33 43 mpbird φ s Word C G dom DProd s G DProd s = B k dom s x s k ran n n · ˙ x = s k
45 ssrexv s k B x s k ran n n · ˙ x = s k x B ran n n · ˙ x = s k
46 20 44 45 sylc φ s Word C G dom DProd s G DProd s = B k dom s x B ran n n · ˙ x = s k
47 46 ralrimiva φ s Word C G dom DProd s G DProd s = B k dom s x B ran n n · ˙ x = s k
48 oveq2 x = w k n · ˙ x = n · ˙ w k
49 48 mpteq2dv x = w k n n · ˙ x = n n · ˙ w k
50 49 rneqd x = w k ran n n · ˙ x = ran n n · ˙ w k
51 50 eqeq1d x = w k ran n n · ˙ x = s k ran n n · ˙ w k = s k
52 51 ac6sfi dom s Fin k dom s x B ran n n · ˙ x = s k w w : dom s B k dom s ran n n · ˙ w k = s k
53 11 47 52 syl2anc φ s Word C G dom DProd s G DProd s = B w w : dom s B k dom s ran n n · ˙ w k = s k
54 simprl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : dom s B
55 9 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k dom s = 0 ..^ s
56 55 feq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : dom s B w : 0 ..^ s B
57 54 56 mpbid φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w : 0 ..^ s B
58 iswrdi w : 0 ..^ s B w Word B
59 57 58 syl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B
60 54 fdmd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k dom w = dom s
61 60 eleq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w j dom s
62 61 biimpa φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w j dom s
63 simprr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom s ran n n · ˙ w k = s k
64 simpl k = j n k = j
65 64 fveq2d k = j n w k = w j
66 65 oveq2d k = j n n · ˙ w k = n · ˙ w j
67 66 mpteq2dva k = j n n · ˙ w k = n n · ˙ w j
68 67 rneqd k = j ran n n · ˙ w k = ran n n · ˙ w j
69 fveq2 k = j s k = s j
70 68 69 eqeq12d k = j ran n n · ˙ w k = s k ran n n · ˙ w j = s j
71 70 rspccva k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j = s j
72 63 71 sylan φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j = s j
73 12 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s : dom s C
74 73 ffvelrnda φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s s j C
75 72 74 eqeltrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom s ran n n · ˙ w j C
76 62 75 syldan φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k j dom w ran n n · ˙ w j C
77 fveq2 k = j w k = w j
78 77 oveq2d k = j n · ˙ w k = n · ˙ w j
79 78 mpteq2dv k = j n n · ˙ w k = n n · ˙ w j
80 79 rneqd k = j ran n n · ˙ w k = ran n n · ˙ w j
81 80 cbvmptv k dom w ran n n · ˙ w k = j dom w ran n n · ˙ w j
82 6 81 eqtri S = j dom w ran n n · ˙ w j
83 76 82 fmptd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S : dom w C
84 simprl φ s Word C G dom DProd s G DProd s = B G dom DProd s
85 84 adantr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G dom DProd s
86 60 raleqdv φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = s k k dom s ran n n · ˙ w k = s k
87 63 86 mpbird φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = s k
88 mpteq12 dom w = dom s k dom w ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = k dom s s k
89 60 87 88 syl2anc φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k k dom w ran n n · ˙ w k = k dom s s k
90 6 89 eqtrid φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S = k dom s s k
91 dprdf G dom DProd s s : dom s SubGrp G
92 85 91 syl φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s : dom s SubGrp G
93 92 feqmptd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k s = k dom s s k
94 90 93 eqtr4d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S = s
95 85 94 breqtrrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G dom DProd S
96 94 oveq2d φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd S = G DProd s
97 simplrr φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd s = B
98 96 97 eqtrd φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k G DProd S = B
99 83 95 98 3jca φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k S : dom w C G dom DProd S G DProd S = B
100 59 99 jca φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B S : dom w C G dom DProd S G DProd S = B
101 100 ex φ s Word C G dom DProd s G DProd s = B w : dom s B k dom s ran n n · ˙ w k = s k w Word B S : dom w C G dom DProd S G DProd S = B
102 101 eximdv φ s Word C G dom DProd s G DProd s = B w w : dom s B k dom s ran n n · ˙ w k = s k w w Word B S : dom w C G dom DProd S G DProd S = B
103 53 102 mpd φ s Word C G dom DProd s G DProd s = B w w Word B S : dom w C G dom DProd S G DProd S = B
104 df-rex w Word B S : dom w C G dom DProd S G DProd S = B w w Word B S : dom w C G dom DProd S G DProd S = B
105 103 104 sylibr φ s Word C G dom DProd s G DProd s = B w Word B S : dom w C G dom DProd S G DProd S = B
106 1 2 3 4 ablfac φ s Word C G dom DProd s G DProd s = B
107 105 106 r19.29a φ w Word B S : dom w C G dom DProd S G DProd S = B