Metamath Proof Explorer


Theorem ablfaclem1

Description: Lemma for ablfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B = Base G
ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
ablfac.1 φ G Abel
ablfac.2 φ B Fin
ablfac.o O = od G
ablfac.a A = w | w B
ablfac.s S = p A x B | O x p p pCnt B
ablfac.w W = g SubGrp G s Word C | G dom DProd s G DProd s = g
Assertion ablfaclem1 U SubGrp G W U = s Word C | G dom DProd s G DProd s = U

Proof

Step Hyp Ref Expression
1 ablfac.b B = Base G
2 ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 ablfac.1 φ G Abel
4 ablfac.2 φ B Fin
5 ablfac.o O = od G
6 ablfac.a A = w | w B
7 ablfac.s S = p A x B | O x p p pCnt B
8 ablfac.w W = g SubGrp G s Word C | G dom DProd s G DProd s = g
9 eqeq2 g = U G DProd s = g G DProd s = U
10 9 anbi2d g = U G dom DProd s G DProd s = g G dom DProd s G DProd s = U
11 10 rabbidv g = U s Word C | G dom DProd s G DProd s = g = s Word C | G dom DProd s G DProd s = U
12 fvex SubGrp G V
13 2 12 rabex2 C V
14 13 wrdexi Word C V
15 14 rabex s Word C | G dom DProd s G DProd s = U V
16 11 8 15 fvmpt U SubGrp G W U = s Word C | G dom DProd s G DProd s = U