Step |
Hyp |
Ref |
Expression |
1 |
|
ablfac.b |
|
2 |
|
ablfac.c |
|
3 |
|
ablfac.1 |
|
4 |
|
ablfac.2 |
|
5 |
|
ablfac.o |
|
6 |
|
ablfac.a |
|
7 |
|
ablfac.s |
|
8 |
|
ablfac.w |
|
9 |
|
ablfaclem2.f |
|
10 |
|
ablfaclem2.q |
|
11 |
|
ablfaclem2.l |
|
12 |
|
ablfaclem2.g |
|
13 |
|
ablgrp |
|
14 |
1
|
subgid |
|
15 |
1 2 3 4 5 6 7 8
|
ablfaclem1 |
|
16 |
3 13 14 15
|
4syl |
|
17 |
9
|
ffvelrnda |
|
18 |
|
wrdf |
|
19 |
17 18
|
syl |
|
20 |
19
|
ffdmd |
|
21 |
20
|
ffvelrnda |
|
22 |
21
|
anasss |
|
23 |
22
|
ralrimivva |
|
24 |
|
eqid |
|
25 |
24
|
fmpox |
|
26 |
23 25
|
sylib |
|
27 |
11
|
feq2i |
|
28 |
26 27
|
sylibr |
|
29 |
|
f1of |
|
30 |
12 29
|
syl |
|
31 |
|
fco |
|
32 |
28 30 31
|
syl2anc |
|
33 |
|
iswrdi |
|
34 |
32 33
|
syl |
|
35 |
10
|
r19.21bi |
|
36 |
6
|
ssrab3 |
|
37 |
36
|
a1i |
|
38 |
1 5 7 3 4 37
|
ablfac1b |
|
39 |
1
|
fvexi |
|
40 |
39
|
rabex |
|
41 |
40 7
|
dmmpti |
|
42 |
41
|
a1i |
|
43 |
38 42
|
dprdf2 |
|
44 |
43
|
ffvelrnda |
|
45 |
1 2 3 4 5 6 7 8
|
ablfaclem1 |
|
46 |
44 45
|
syl |
|
47 |
35 46
|
eleqtrd |
|
48 |
|
breq2 |
|
49 |
|
oveq2 |
|
50 |
49
|
eqeq1d |
|
51 |
48 50
|
anbi12d |
|
52 |
51
|
elrab |
|
53 |
52
|
simprbi |
|
54 |
47 53
|
syl |
|
55 |
54
|
simpld |
|
56 |
|
dprdf |
|
57 |
55 56
|
syl |
|
58 |
57
|
ffvelrnda |
|
59 |
58
|
anasss |
|
60 |
57
|
feqmptd |
|
61 |
55 60
|
breqtrd |
|
62 |
43
|
feqmptd |
|
63 |
60
|
oveq2d |
|
64 |
54
|
simprd |
|
65 |
63 64
|
eqtr3d |
|
66 |
65
|
mpteq2dva |
|
67 |
62 66
|
eqtr4d |
|
68 |
38 67
|
breqtrd |
|
69 |
59 61 68
|
dprd2d2 |
|
70 |
69
|
simpld |
|
71 |
28
|
fdmd |
|
72 |
70 71 12
|
dprdf1o |
|
73 |
72
|
simpld |
|
74 |
72
|
simprd |
|
75 |
69
|
simprd |
|
76 |
67
|
oveq2d |
|
77 |
|
ssidd |
|
78 |
1 5 7 3 4 37 6 77
|
ablfac1c |
|
79 |
76 78
|
eqtr3d |
|
80 |
74 75 79
|
3eqtrd |
|
81 |
|
breq2 |
|
82 |
|
oveq2 |
|
83 |
82
|
eqeq1d |
|
84 |
81 83
|
anbi12d |
|
85 |
84
|
rspcev |
|
86 |
34 73 80 85
|
syl12anc |
|
87 |
|
rabn0 |
|
88 |
86 87
|
sylibr |
|
89 |
16 88
|
eqnetrd |
|