Metamath Proof Explorer


Theorem ablfaclem3

Description: Lemma for ablfac . (Contributed by Mario Carneiro, 27-Apr-2016) (Revised by Mario Carneiro, 3-May-2016)

Ref Expression
Hypotheses ablfac.b B = Base G
ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
ablfac.1 φ G Abel
ablfac.2 φ B Fin
ablfac.o O = od G
ablfac.a A = w | w B
ablfac.s S = p A x B | O x p p pCnt B
ablfac.w W = g SubGrp G s Word C | G dom DProd s G DProd s = g
Assertion ablfaclem3 φ W B

Proof

Step Hyp Ref Expression
1 ablfac.b B = Base G
2 ablfac.c C = r SubGrp G | G 𝑠 r CycGrp ran pGrp
3 ablfac.1 φ G Abel
4 ablfac.2 φ B Fin
5 ablfac.o O = od G
6 ablfac.a A = w | w B
7 ablfac.s S = p A x B | O x p p pCnt B
8 ablfac.w W = g SubGrp G s Word C | G dom DProd s G DProd s = g
9 fzfid φ 1 B Fin
10 prmnn w w
11 10 3ad2ant2 φ w w B w
12 prmz w w
13 ablgrp G Abel G Grp
14 1 grpbn0 G Grp B
15 3 13 14 3syl φ B
16 hashnncl B Fin B B
17 4 16 syl φ B B
18 15 17 mpbird φ B
19 dvdsle w B w B w B
20 12 18 19 syl2anr φ w w B w B
21 20 3impia φ w w B w B
22 18 nnzd φ B
23 22 3ad2ant1 φ w w B B
24 fznn B w 1 B w w B
25 23 24 syl φ w w B w 1 B w w B
26 11 21 25 mpbir2and φ w w B w 1 B
27 26 rabssdv φ w | w B 1 B
28 6 27 eqsstrid φ A 1 B
29 9 28 ssfid φ A Fin
30 dfin5 Word C W S q = y Word C | y W S q
31 6 ssrab3 A
32 31 a1i φ A
33 1 5 7 3 4 32 ablfac1b φ G dom DProd S
34 1 fvexi B V
35 34 rabex x B | O x p p pCnt B V
36 35 7 dmmpti dom S = A
37 36 a1i φ dom S = A
38 33 37 dprdf2 φ S : A SubGrp G
39 38 ffvelrnda φ q A S q SubGrp G
40 1 2 3 4 5 6 7 8 ablfaclem1 S q SubGrp G W S q = s Word C | G dom DProd s G DProd s = S q
41 39 40 syl φ q A W S q = s Word C | G dom DProd s G DProd s = S q
42 ssrab2 s Word C | G dom DProd s G DProd s = S q Word C
43 41 42 eqsstrdi φ q A W S q Word C
44 sseqin2 W S q Word C Word C W S q = W S q
45 43 44 sylib φ q A Word C W S q = W S q
46 30 45 eqtr3id φ q A y Word C | y W S q = W S q
47 46 41 eqtrd φ q A y Word C | y W S q = s Word C | G dom DProd s G DProd s = S q
48 eqid Base G 𝑠 S q = Base G 𝑠 S q
49 eqid r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp = r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp
50 eqid G 𝑠 S q = G 𝑠 S q
51 50 subgabl G Abel S q SubGrp G G 𝑠 S q Abel
52 3 39 51 syl2an2r φ q A G 𝑠 S q Abel
53 32 sselda φ q A q
54 50 subgbas S q SubGrp G S q = Base G 𝑠 S q
55 39 54 syl φ q A S q = Base G 𝑠 S q
56 55 fveq2d φ q A S q = Base G 𝑠 S q
57 1 5 7 3 4 32 ablfac1a φ q A S q = q q pCnt B
58 56 57 eqtr3d φ q A Base G 𝑠 S q = q q pCnt B
59 58 oveq2d φ q A q pCnt Base G 𝑠 S q = q pCnt q q pCnt B
60 18 adantr φ q A B
61 53 60 pccld φ q A q pCnt B 0
62 61 nn0zd φ q A q pCnt B
63 pcid q q pCnt B q pCnt q q pCnt B = q pCnt B
64 53 62 63 syl2anc φ q A q pCnt q q pCnt B = q pCnt B
65 59 64 eqtrd φ q A q pCnt Base G 𝑠 S q = q pCnt B
66 65 oveq2d φ q A q q pCnt Base G 𝑠 S q = q q pCnt B
67 58 66 eqtr4d φ q A Base G 𝑠 S q = q q pCnt Base G 𝑠 S q
68 50 subggrp S q SubGrp G G 𝑠 S q Grp
69 39 68 syl φ q A G 𝑠 S q Grp
70 4 adantr φ q A B Fin
71 1 subgss S q SubGrp G S q B
72 39 71 syl φ q A S q B
73 70 72 ssfid φ q A S q Fin
74 55 73 eqeltrrd φ q A Base G 𝑠 S q Fin
75 48 pgpfi2 G 𝑠 S q Grp Base G 𝑠 S q Fin q pGrp G 𝑠 S q q Base G 𝑠 S q = q q pCnt Base G 𝑠 S q
76 69 74 75 syl2anc φ q A q pGrp G 𝑠 S q q Base G 𝑠 S q = q q pCnt Base G 𝑠 S q
77 53 67 76 mpbir2and φ q A q pGrp G 𝑠 S q
78 48 49 52 77 74 pgpfac φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q
79 ssrab2 r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp SubGrp G 𝑠 S q
80 sswrd r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp SubGrp G 𝑠 S q Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp Word SubGrp G 𝑠 S q
81 79 80 ax-mp Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp Word SubGrp G 𝑠 S q
82 81 sseli s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp s Word SubGrp G 𝑠 S q
83 39 adantr φ q A s Word SubGrp G 𝑠 S q S q SubGrp G
84 83 adantr φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s S q SubGrp G
85 50 subgdmdprd S q SubGrp G G 𝑠 S q dom DProd s G dom DProd s ran s 𝒫 S q
86 83 85 syl φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G dom DProd s ran s 𝒫 S q
87 86 simprbda φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G dom DProd s
88 86 simplbda φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s ran s 𝒫 S q
89 50 84 87 88 subgdprd φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G 𝑠 S q DProd s = G DProd s
90 55 ad2antrr φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s S q = Base G 𝑠 S q
91 90 eqcomd φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s Base G 𝑠 S q = S q
92 89 91 eqeq12d φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q G DProd s = S q
93 92 biimpd φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q G DProd s = S q
94 93 87 jctild φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q G dom DProd s G DProd s = S q
95 94 expimpd φ q A s Word SubGrp G 𝑠 S q G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q G dom DProd s G DProd s = S q
96 82 95 sylan2 φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q G dom DProd s G DProd s = S q
97 oveq2 r = y G 𝑠 S q 𝑠 r = G 𝑠 S q 𝑠 y
98 97 eleq1d r = y G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q 𝑠 y CycGrp ran pGrp
99 98 cbvrabv r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp = y SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 y CycGrp ran pGrp
100 50 subsubg S q SubGrp G y SubGrp G 𝑠 S q y SubGrp G y S q
101 39 100 syl φ q A y SubGrp G 𝑠 S q y SubGrp G y S q
102 101 simprbda φ q A y SubGrp G 𝑠 S q y SubGrp G
103 102 3adant3 φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp y SubGrp G
104 39 3ad2ant1 φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp S q SubGrp G
105 101 simplbda φ q A y SubGrp G 𝑠 S q y S q
106 105 3adant3 φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp y S q
107 ressabs S q SubGrp G y S q G 𝑠 S q 𝑠 y = G 𝑠 y
108 104 106 107 syl2anc φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp G 𝑠 S q 𝑠 y = G 𝑠 y
109 simp3 φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp G 𝑠 S q 𝑠 y CycGrp ran pGrp
110 108 109 eqeltrrd φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp G 𝑠 y CycGrp ran pGrp
111 oveq2 r = y G 𝑠 r = G 𝑠 y
112 111 eleq1d r = y G 𝑠 r CycGrp ran pGrp G 𝑠 y CycGrp ran pGrp
113 112 2 elrab2 y C y SubGrp G G 𝑠 y CycGrp ran pGrp
114 103 110 113 sylanbrc φ q A y SubGrp G 𝑠 S q G 𝑠 S q 𝑠 y CycGrp ran pGrp y C
115 114 rabssdv φ q A y SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 y CycGrp ran pGrp C
116 99 115 eqsstrid φ q A r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp C
117 sswrd r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp C Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp Word C
118 116 117 syl φ q A Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp Word C
119 118 sselda φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp s Word C
120 96 119 jctild φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q s Word C G dom DProd s G DProd s = S q
121 120 expimpd φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q s Word C G dom DProd s G DProd s = S q
122 121 reximdv2 φ q A s Word r SubGrp G 𝑠 S q | G 𝑠 S q 𝑠 r CycGrp ran pGrp G 𝑠 S q dom DProd s G 𝑠 S q DProd s = Base G 𝑠 S q s Word C G dom DProd s G DProd s = S q
123 78 122 mpd φ q A s Word C G dom DProd s G DProd s = S q
124 rabn0 s Word C | G dom DProd s G DProd s = S q s Word C G dom DProd s G DProd s = S q
125 123 124 sylibr φ q A s Word C | G dom DProd s G DProd s = S q
126 47 125 eqnetrd φ q A y Word C | y W S q
127 rabn0 y Word C | y W S q y Word C y W S q
128 126 127 sylib φ q A y Word C y W S q
129 128 ralrimiva φ q A y Word C y W S q
130 eleq1 y = f q y W S q f q W S q
131 130 ac6sfi A Fin q A y Word C y W S q f f : A Word C q A f q W S q
132 29 129 131 syl2anc φ f f : A Word C q A f q W S q
133 sneq q = y q = y
134 fveq2 q = y f q = f y
135 134 dmeqd q = y dom f q = dom f y
136 133 135 xpeq12d q = y q × dom f q = y × dom f y
137 136 cbviunv q A q × dom f q = y A y × dom f y
138 snfi y Fin
139 simprl φ f : A Word C q A f q W S q f : A Word C
140 139 ffvelrnda φ f : A Word C q A f q W S q y A f y Word C
141 wrdf f y Word C f y : 0 ..^ f y C
142 fdm f y : 0 ..^ f y C dom f y = 0 ..^ f y
143 140 141 142 3syl φ f : A Word C q A f q W S q y A dom f y = 0 ..^ f y
144 fzofi 0 ..^ f y Fin
145 143 144 eqeltrdi φ f : A Word C q A f q W S q y A dom f y Fin
146 xpfi y Fin dom f y Fin y × dom f y Fin
147 138 145 146 sylancr φ f : A Word C q A f q W S q y A y × dom f y Fin
148 147 ralrimiva φ f : A Word C q A f q W S q y A y × dom f y Fin
149 iunfi A Fin y A y × dom f y Fin y A y × dom f y Fin
150 29 148 149 syl2an2r φ f : A Word C q A f q W S q y A y × dom f y Fin
151 137 150 eqeltrid φ f : A Word C q A f q W S q q A q × dom f q Fin
152 hashcl q A q × dom f q Fin q A q × dom f q 0
153 hashfzo0 q A q × dom f q 0 0 ..^ q A q × dom f q = q A q × dom f q
154 151 152 153 3syl φ f : A Word C q A f q W S q 0 ..^ q A q × dom f q = q A q × dom f q
155 fzofi 0 ..^ q A q × dom f q Fin
156 hashen 0 ..^ q A q × dom f q Fin q A q × dom f q Fin 0 ..^ q A q × dom f q = q A q × dom f q 0 ..^ q A q × dom f q q A q × dom f q
157 155 151 156 sylancr φ f : A Word C q A f q W S q 0 ..^ q A q × dom f q = q A q × dom f q 0 ..^ q A q × dom f q q A q × dom f q
158 154 157 mpbid φ f : A Word C q A f q W S q 0 ..^ q A q × dom f q q A q × dom f q
159 bren 0 ..^ q A q × dom f q q A q × dom f q h h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q
160 158 159 sylib φ f : A Word C q A f q W S q h h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q
161 3 adantr φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q G Abel
162 4 adantr φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q B Fin
163 breq1 w = a w B a B
164 163 cbvrabv w | w B = a | a B
165 6 164 eqtri A = a | a B
166 fveq2 x = c O x = O c
167 166 breq1d x = c O x p p pCnt B O c p p pCnt B
168 167 cbvrabv x B | O x p p pCnt B = c B | O c p p pCnt B
169 id p = b p = b
170 oveq1 p = b p pCnt B = b pCnt B
171 169 170 oveq12d p = b p p pCnt B = b b pCnt B
172 171 breq2d p = b O c p p pCnt B O c b b pCnt B
173 172 rabbidv p = b c B | O c p p pCnt B = c B | O c b b pCnt B
174 168 173 eqtrid p = b x B | O x p p pCnt B = c B | O c b b pCnt B
175 174 cbvmptv p A x B | O x p p pCnt B = b A c B | O c b b pCnt B
176 7 175 eqtri S = b A c B | O c b b pCnt B
177 breq2 s = t G dom DProd s G dom DProd t
178 oveq2 s = t G DProd s = G DProd t
179 178 eqeq1d s = t G DProd s = g G DProd t = g
180 177 179 anbi12d s = t G dom DProd s G DProd s = g G dom DProd t G DProd t = g
181 180 cbvrabv s Word C | G dom DProd s G DProd s = g = t Word C | G dom DProd t G DProd t = g
182 181 mpteq2i g SubGrp G s Word C | G dom DProd s G DProd s = g = g SubGrp G t Word C | G dom DProd t G DProd t = g
183 8 182 eqtri W = g SubGrp G t Word C | G dom DProd t G DProd t = g
184 simprll φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q f : A Word C
185 simprlr φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q q A f q W S q
186 2fveq3 q = y W S q = W S y
187 134 186 eleq12d q = y f q W S q f y W S y
188 187 cbvralvw q A f q W S q y A f y W S y
189 185 188 sylib φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q y A f y W S y
190 simprr φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q
191 1 2 161 162 5 165 176 183 184 189 137 190 ablfaclem2 φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q W B
192 191 expr φ f : A Word C q A f q W S q h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q W B
193 192 exlimdv φ f : A Word C q A f q W S q h h : 0 ..^ q A q × dom f q 1-1 onto q A q × dom f q W B
194 160 193 mpd φ f : A Word C q A f q W S q W B
195 132 194 exlimddv φ W B