Metamath Proof Explorer


Theorem ablfacrp2

Description: The factors K , L of ablfacrp have the expected orders (which allows for repeated application to decompose G into subgroups of prime-power order). Lemma 6.1C.2 of Shapiro, p. 199. (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B = Base G
ablfacrp.o O = od G
ablfacrp.k K = x B | O x M
ablfacrp.l L = x B | O x N
ablfacrp.g φ G Abel
ablfacrp.m φ M
ablfacrp.n φ N
ablfacrp.1 φ M gcd N = 1
ablfacrp.2 φ B = M N
Assertion ablfacrp2 φ K = M L = N

Proof

Step Hyp Ref Expression
1 ablfacrp.b B = Base G
2 ablfacrp.o O = od G
3 ablfacrp.k K = x B | O x M
4 ablfacrp.l L = x B | O x N
5 ablfacrp.g φ G Abel
6 ablfacrp.m φ M
7 ablfacrp.n φ N
8 ablfacrp.1 φ M gcd N = 1
9 ablfacrp.2 φ B = M N
10 6 nnnn0d φ M 0
11 7 nnnn0d φ N 0
12 10 11 nn0mulcld φ M N 0
13 9 12 eqeltrd φ B 0
14 1 fvexi B V
15 hashclb B V B Fin B 0
16 14 15 ax-mp B Fin B 0
17 13 16 sylibr φ B Fin
18 3 ssrab3 K B
19 ssfi B Fin K B K Fin
20 17 18 19 sylancl φ K Fin
21 hashcl K Fin K 0
22 20 21 syl φ K 0
23 6 nnzd φ M
24 2 1 oddvdssubg G Abel M x B | O x M SubGrp G
25 5 23 24 syl2anc φ x B | O x M SubGrp G
26 3 25 eqeltrid φ K SubGrp G
27 1 lagsubg K SubGrp G B Fin K B
28 26 17 27 syl2anc φ K B
29 6 nncnd φ M
30 7 nncnd φ N
31 29 30 mulcomd φ M N = N M
32 9 31 eqtrd φ B = N M
33 28 32 breqtrd φ K N M
34 1 2 3 4 5 6 7 8 9 ablfacrplem φ K gcd N = 1
35 22 nn0zd φ K
36 7 nnzd φ N
37 coprmdvds K N M K N M K gcd N = 1 K M
38 35 36 23 37 syl3anc φ K N M K gcd N = 1 K M
39 33 34 38 mp2and φ K M
40 2 1 oddvdssubg G Abel N x B | O x N SubGrp G
41 5 36 40 syl2anc φ x B | O x N SubGrp G
42 4 41 eqeltrid φ L SubGrp G
43 1 lagsubg L SubGrp G B Fin L B
44 42 17 43 syl2anc φ L B
45 44 9 breqtrd φ L M N
46 23 36 gcdcomd φ M gcd N = N gcd M
47 46 8 eqtr3d φ N gcd M = 1
48 1 2 4 3 5 7 6 47 32 ablfacrplem φ L gcd M = 1
49 4 ssrab3 L B
50 ssfi B Fin L B L Fin
51 17 49 50 sylancl φ L Fin
52 hashcl L Fin L 0
53 51 52 syl φ L 0
54 53 nn0zd φ L
55 coprmdvds L M N L M N L gcd M = 1 L N
56 54 23 36 55 syl3anc φ L M N L gcd M = 1 L N
57 45 48 56 mp2and φ L N
58 dvdscmul L N M L N M L M N
59 54 36 23 58 syl3anc φ L N M L M N
60 57 59 mpd φ M L M N
61 eqid 0 G = 0 G
62 eqid LSSum G = LSSum G
63 1 2 3 4 5 6 7 8 9 61 62 ablfacrp φ K L = 0 G K LSSum G L = B
64 63 simprd φ K LSSum G L = B
65 64 fveq2d φ K LSSum G L = B
66 eqid Cntz G = Cntz G
67 63 simpld φ K L = 0 G
68 66 5 26 42 ablcntzd φ K Cntz G L
69 62 61 66 26 42 67 68 20 51 lsmhash φ K LSSum G L = K L
70 65 69 eqtr3d φ B = K L
71 70 9 eqtr3d φ K L = M N
72 60 71 breqtrrd φ M L K L
73 61 subg0cl L SubGrp G 0 G L
74 ne0i 0 G L L
75 42 73 74 3syl φ L
76 hashnncl L Fin L L
77 51 76 syl φ L L
78 75 77 mpbird φ L
79 78 nnne0d φ L 0
80 dvdsmulcr M K L L 0 M L K L M K
81 23 35 54 79 80 syl112anc φ M L K L M K
82 72 81 mpbid φ M K
83 dvdseq K 0 M 0 K M M K K = M
84 22 10 39 82 83 syl22anc φ K = M
85 dvdsmulc K M N K M K N M N
86 35 23 36 85 syl3anc φ K M K N M N
87 39 86 mpd φ K N M N
88 87 71 breqtrrd φ K N K L
89 84 6 eqeltrd φ K
90 89 nnne0d φ K 0
91 dvdscmulr N L K K 0 K N K L N L
92 36 54 35 90 91 syl112anc φ K N K L N L
93 88 92 mpbid φ N L
94 dvdseq L 0 N 0 L N N L L = N
95 53 11 57 93 94 syl22anc φ L = N
96 84 95 jca φ K = M L = N