Metamath Proof Explorer


Theorem ablfacrplem

Description: Lemma for ablfacrp2 . (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B = Base G
ablfacrp.o O = od G
ablfacrp.k K = x B | O x M
ablfacrp.l L = x B | O x N
ablfacrp.g φ G Abel
ablfacrp.m φ M
ablfacrp.n φ N
ablfacrp.1 φ M gcd N = 1
ablfacrp.2 φ B = M N
Assertion ablfacrplem φ K gcd N = 1

Proof

Step Hyp Ref Expression
1 ablfacrp.b B = Base G
2 ablfacrp.o O = od G
3 ablfacrp.k K = x B | O x M
4 ablfacrp.l L = x B | O x N
5 ablfacrp.g φ G Abel
6 ablfacrp.m φ M
7 ablfacrp.n φ N
8 ablfacrp.1 φ M gcd N = 1
9 ablfacrp.2 φ B = M N
10 nprmdvds1 p ¬ p 1
11 10 adantl φ p ¬ p 1
12 8 adantr φ p M gcd N = 1
13 12 breq2d φ p p M gcd N p 1
14 11 13 mtbird φ p ¬ p M gcd N
15 6 nnzd φ M
16 2 1 oddvdssubg G Abel M x B | O x M SubGrp G
17 5 15 16 syl2anc φ x B | O x M SubGrp G
18 3 17 eqeltrid φ K SubGrp G
19 18 ad2antrr φ p p K K SubGrp G
20 eqid G 𝑠 K = G 𝑠 K
21 20 subggrp K SubGrp G G 𝑠 K Grp
22 19 21 syl φ p p K G 𝑠 K Grp
23 20 subgbas K SubGrp G K = Base G 𝑠 K
24 19 23 syl φ p p K K = Base G 𝑠 K
25 6 nnnn0d φ M 0
26 7 nnnn0d φ N 0
27 25 26 nn0mulcld φ M N 0
28 9 27 eqeltrd φ B 0
29 1 fvexi B V
30 hashclb B V B Fin B 0
31 29 30 ax-mp B Fin B 0
32 28 31 sylibr φ B Fin
33 3 ssrab3 K B
34 ssfi B Fin K B K Fin
35 32 33 34 sylancl φ K Fin
36 35 ad2antrr φ p p K K Fin
37 24 36 eqeltrrd φ p p K Base G 𝑠 K Fin
38 simplr φ p p K p
39 simpr φ p p K p K
40 24 fveq2d φ p p K K = Base G 𝑠 K
41 39 40 breqtrd φ p p K p Base G 𝑠 K
42 eqid Base G 𝑠 K = Base G 𝑠 K
43 eqid od G 𝑠 K = od G 𝑠 K
44 42 43 odcau G 𝑠 K Grp Base G 𝑠 K Fin p p Base G 𝑠 K g Base G 𝑠 K od G 𝑠 K g = p
45 22 37 38 41 44 syl31anc φ p p K g Base G 𝑠 K od G 𝑠 K g = p
46 45 24 rexeqtrrdv φ p p K g K od G 𝑠 K g = p
47 20 2 43 subgod K SubGrp G g K O g = od G 𝑠 K g
48 19 47 sylan φ p p K g K O g = od G 𝑠 K g
49 fveq2 x = g O x = O g
50 49 breq1d x = g O x M O g M
51 50 3 elrab2 g K g B O g M
52 51 simprbi g K O g M
53 52 adantl φ p p K g K O g M
54 48 53 eqbrtrrd φ p p K g K od G 𝑠 K g M
55 breq1 od G 𝑠 K g = p od G 𝑠 K g M p M
56 54 55 syl5ibcom φ p p K g K od G 𝑠 K g = p p M
57 56 rexlimdva φ p p K g K od G 𝑠 K g = p p M
58 46 57 mpd φ p p K p M
59 58 ex φ p p K p M
60 59 anim1d φ p p K p N p M p N
61 prmz p p
62 61 adantl φ p p
63 hashcl K Fin K 0
64 35 63 syl φ K 0
65 64 nn0zd φ K
66 65 adantr φ p K
67 7 nnzd φ N
68 67 adantr φ p N
69 dvdsgcdb p K N p K p N p K gcd N
70 62 66 68 69 syl3anc φ p p K p N p K gcd N
71 15 adantr φ p M
72 dvdsgcdb p M N p M p N p M gcd N
73 62 71 68 72 syl3anc φ p p M p N p M gcd N
74 60 70 73 3imtr3d φ p p K gcd N p M gcd N
75 14 74 mtod φ p ¬ p K gcd N
76 75 nrexdv φ ¬ p p K gcd N
77 exprmfct K gcd N 2 p p K gcd N
78 76 77 nsyl φ ¬ K gcd N 2
79 7 nnne0d φ N 0
80 simpr K = 0 N = 0 N = 0
81 80 necon3ai N 0 ¬ K = 0 N = 0
82 79 81 syl φ ¬ K = 0 N = 0
83 gcdn0cl K N ¬ K = 0 N = 0 K gcd N
84 65 67 82 83 syl21anc φ K gcd N
85 elnn1uz2 K gcd N K gcd N = 1 K gcd N 2
86 84 85 sylib φ K gcd N = 1 K gcd N 2
87 86 ord φ ¬ K gcd N = 1 K gcd N 2
88 78 87 mt3d φ K gcd N = 1