Metamath Proof Explorer


Theorem ablfacrplem

Description: Lemma for ablfacrp2 . (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B = Base G
ablfacrp.o O = od G
ablfacrp.k K = x B | O x M
ablfacrp.l L = x B | O x N
ablfacrp.g φ G Abel
ablfacrp.m φ M
ablfacrp.n φ N
ablfacrp.1 φ M gcd N = 1
ablfacrp.2 φ B = M N
Assertion ablfacrplem φ K gcd N = 1

Proof

Step Hyp Ref Expression
1 ablfacrp.b B = Base G
2 ablfacrp.o O = od G
3 ablfacrp.k K = x B | O x M
4 ablfacrp.l L = x B | O x N
5 ablfacrp.g φ G Abel
6 ablfacrp.m φ M
7 ablfacrp.n φ N
8 ablfacrp.1 φ M gcd N = 1
9 ablfacrp.2 φ B = M N
10 nprmdvds1 p ¬ p 1
11 10 adantl φ p ¬ p 1
12 8 adantr φ p M gcd N = 1
13 12 breq2d φ p p M gcd N p 1
14 11 13 mtbird φ p ¬ p M gcd N
15 6 nnzd φ M
16 2 1 oddvdssubg G Abel M x B | O x M SubGrp G
17 5 15 16 syl2anc φ x B | O x M SubGrp G
18 3 17 eqeltrid φ K SubGrp G
19 18 ad2antrr φ p p K K SubGrp G
20 eqid G 𝑠 K = G 𝑠 K
21 20 subggrp K SubGrp G G 𝑠 K Grp
22 19 21 syl φ p p K G 𝑠 K Grp
23 20 subgbas K SubGrp G K = Base G 𝑠 K
24 19 23 syl φ p p K K = Base G 𝑠 K
25 6 nnnn0d φ M 0
26 7 nnnn0d φ N 0
27 25 26 nn0mulcld φ M N 0
28 9 27 eqeltrd φ B 0
29 1 fvexi B V
30 hashclb B V B Fin B 0
31 29 30 ax-mp B Fin B 0
32 28 31 sylibr φ B Fin
33 3 ssrab3 K B
34 ssfi B Fin K B K Fin
35 32 33 34 sylancl φ K Fin
36 35 ad2antrr φ p p K K Fin
37 24 36 eqeltrrd φ p p K Base G 𝑠 K Fin
38 simplr φ p p K p
39 simpr φ p p K p K
40 24 fveq2d φ p p K K = Base G 𝑠 K
41 39 40 breqtrd φ p p K p Base G 𝑠 K
42 eqid Base G 𝑠 K = Base G 𝑠 K
43 eqid od G 𝑠 K = od G 𝑠 K
44 42 43 odcau G 𝑠 K Grp Base G 𝑠 K Fin p p Base G 𝑠 K g Base G 𝑠 K od G 𝑠 K g = p
45 22 37 38 41 44 syl31anc φ p p K g Base G 𝑠 K od G 𝑠 K g = p
46 24 rexeqdv φ p p K g K od G 𝑠 K g = p g Base G 𝑠 K od G 𝑠 K g = p
47 45 46 mpbird φ p p K g K od G 𝑠 K g = p
48 20 2 43 subgod K SubGrp G g K O g = od G 𝑠 K g
49 19 48 sylan φ p p K g K O g = od G 𝑠 K g
50 fveq2 x = g O x = O g
51 50 breq1d x = g O x M O g M
52 51 3 elrab2 g K g B O g M
53 52 simprbi g K O g M
54 53 adantl φ p p K g K O g M
55 49 54 eqbrtrrd φ p p K g K od G 𝑠 K g M
56 breq1 od G 𝑠 K g = p od G 𝑠 K g M p M
57 55 56 syl5ibcom φ p p K g K od G 𝑠 K g = p p M
58 57 rexlimdva φ p p K g K od G 𝑠 K g = p p M
59 47 58 mpd φ p p K p M
60 59 ex φ p p K p M
61 60 anim1d φ p p K p N p M p N
62 prmz p p
63 62 adantl φ p p
64 hashcl K Fin K 0
65 35 64 syl φ K 0
66 65 nn0zd φ K
67 66 adantr φ p K
68 7 nnzd φ N
69 68 adantr φ p N
70 dvdsgcdb p K N p K p N p K gcd N
71 63 67 69 70 syl3anc φ p p K p N p K gcd N
72 15 adantr φ p M
73 dvdsgcdb p M N p M p N p M gcd N
74 63 72 69 73 syl3anc φ p p M p N p M gcd N
75 61 71 74 3imtr3d φ p p K gcd N p M gcd N
76 14 75 mtod φ p ¬ p K gcd N
77 76 nrexdv φ ¬ p p K gcd N
78 exprmfct K gcd N 2 p p K gcd N
79 77 78 nsyl φ ¬ K gcd N 2
80 7 nnne0d φ N 0
81 simpr K = 0 N = 0 N = 0
82 81 necon3ai N 0 ¬ K = 0 N = 0
83 80 82 syl φ ¬ K = 0 N = 0
84 gcdn0cl K N ¬ K = 0 N = 0 K gcd N
85 66 68 83 84 syl21anc φ K gcd N
86 elnn1uz2 K gcd N K gcd N = 1 K gcd N 2
87 85 86 sylib φ K gcd N = 1 K gcd N 2
88 87 ord φ ¬ K gcd N = 1 K gcd N 2
89 79 88 mt3d φ K gcd N = 1