Step |
Hyp |
Ref |
Expression |
1 |
|
ablfacrp.b |
|
2 |
|
ablfacrp.o |
|
3 |
|
ablfacrp.k |
|
4 |
|
ablfacrp.l |
|
5 |
|
ablfacrp.g |
|
6 |
|
ablfacrp.m |
|
7 |
|
ablfacrp.n |
|
8 |
|
ablfacrp.1 |
|
9 |
|
ablfacrp.2 |
|
10 |
|
nprmdvds1 |
|
11 |
10
|
adantl |
|
12 |
8
|
adantr |
|
13 |
12
|
breq2d |
|
14 |
11 13
|
mtbird |
|
15 |
6
|
nnzd |
|
16 |
2 1
|
oddvdssubg |
|
17 |
5 15 16
|
syl2anc |
|
18 |
3 17
|
eqeltrid |
|
19 |
18
|
ad2antrr |
|
20 |
|
eqid |
|
21 |
20
|
subggrp |
|
22 |
19 21
|
syl |
|
23 |
20
|
subgbas |
|
24 |
19 23
|
syl |
|
25 |
6
|
nnnn0d |
|
26 |
7
|
nnnn0d |
|
27 |
25 26
|
nn0mulcld |
|
28 |
9 27
|
eqeltrd |
|
29 |
1
|
fvexi |
|
30 |
|
hashclb |
|
31 |
29 30
|
ax-mp |
|
32 |
28 31
|
sylibr |
|
33 |
3
|
ssrab3 |
|
34 |
|
ssfi |
|
35 |
32 33 34
|
sylancl |
|
36 |
35
|
ad2antrr |
|
37 |
24 36
|
eqeltrrd |
|
38 |
|
simplr |
|
39 |
|
simpr |
|
40 |
24
|
fveq2d |
|
41 |
39 40
|
breqtrd |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
42 43
|
odcau |
|
45 |
22 37 38 41 44
|
syl31anc |
|
46 |
45 24
|
rexeqtrrdv |
|
47 |
20 2 43
|
subgod |
|
48 |
19 47
|
sylan |
|
49 |
|
fveq2 |
|
50 |
49
|
breq1d |
|
51 |
50 3
|
elrab2 |
|
52 |
51
|
simprbi |
|
53 |
52
|
adantl |
|
54 |
48 53
|
eqbrtrrd |
|
55 |
|
breq1 |
|
56 |
54 55
|
syl5ibcom |
|
57 |
56
|
rexlimdva |
|
58 |
46 57
|
mpd |
|
59 |
58
|
ex |
|
60 |
59
|
anim1d |
|
61 |
|
prmz |
|
62 |
61
|
adantl |
|
63 |
|
hashcl |
|
64 |
35 63
|
syl |
|
65 |
64
|
nn0zd |
|
66 |
65
|
adantr |
|
67 |
7
|
nnzd |
|
68 |
67
|
adantr |
|
69 |
|
dvdsgcdb |
|
70 |
62 66 68 69
|
syl3anc |
|
71 |
15
|
adantr |
|
72 |
|
dvdsgcdb |
|
73 |
62 71 68 72
|
syl3anc |
|
74 |
60 70 73
|
3imtr3d |
|
75 |
14 74
|
mtod |
|
76 |
75
|
nrexdv |
|
77 |
|
exprmfct |
|
78 |
76 77
|
nsyl |
|
79 |
7
|
nnne0d |
|
80 |
|
simpr |
|
81 |
80
|
necon3ai |
|
82 |
79 81
|
syl |
|
83 |
|
gcdn0cl |
|
84 |
65 67 82 83
|
syl21anc |
|
85 |
|
elnn1uz2 |
|
86 |
84 85
|
sylib |
|
87 |
86
|
ord |
|
88 |
78 87
|
mt3d |
|