Metamath Proof Explorer


Theorem ablnncan

Description: Cancellation law for group subtraction. ( nncan analog.) (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablnncan.b B = Base G
ablnncan.m - ˙ = - G
ablnncan.g φ G Abel
ablnncan.x φ X B
ablnncan.y φ Y B
Assertion ablnncan φ X - ˙ X - ˙ Y = Y

Proof

Step Hyp Ref Expression
1 ablnncan.b B = Base G
2 ablnncan.m - ˙ = - G
3 ablnncan.g φ G Abel
4 ablnncan.x φ X B
5 ablnncan.y φ Y B
6 eqid + G = + G
7 1 6 2 3 4 4 5 ablsubsub φ X - ˙ X - ˙ Y = X - ˙ X + G Y
8 ablgrp G Abel G Grp
9 3 8 syl φ G Grp
10 eqid 0 G = 0 G
11 1 10 2 grpsubid G Grp X B X - ˙ X = 0 G
12 9 4 11 syl2anc φ X - ˙ X = 0 G
13 12 oveq1d φ X - ˙ X + G Y = 0 G + G Y
14 1 6 10 grplid G Grp Y B 0 G + G Y = Y
15 9 5 14 syl2anc φ 0 G + G Y = Y
16 7 13 15 3eqtrd φ X - ˙ X - ˙ Y = Y