Metamath Proof Explorer


Theorem ablnnncan1

Description: Cancellation law for group subtraction. ( nnncan1 analog.) (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablnncan.b B = Base G
ablnncan.m - ˙ = - G
ablnncan.g φ G Abel
ablnncan.x φ X B
ablnncan.y φ Y B
ablsub32.z φ Z B
Assertion ablnnncan1 φ X - ˙ Y - ˙ X - ˙ Z = Z - ˙ Y

Proof

Step Hyp Ref Expression
1 ablnncan.b B = Base G
2 ablnncan.m - ˙ = - G
3 ablnncan.g φ G Abel
4 ablnncan.x φ X B
5 ablnncan.y φ Y B
6 ablsub32.z φ Z B
7 ablgrp G Abel G Grp
8 3 7 syl φ G Grp
9 1 2 grpsubcl G Grp X B Z B X - ˙ Z B
10 8 4 6 9 syl3anc φ X - ˙ Z B
11 1 2 3 4 5 10 ablsub32 φ X - ˙ Y - ˙ X - ˙ Z = X - ˙ X - ˙ Z - ˙ Y
12 1 2 3 4 6 ablnncan φ X - ˙ X - ˙ Z = Z
13 12 oveq1d φ X - ˙ X - ˙ Z - ˙ Y = Z - ˙ Y
14 11 13 eqtrd φ X - ˙ Y - ˙ X - ˙ Z = Z - ˙ Y