Metamath Proof Explorer


Theorem ablnsg

Description: Every subgroup of an abelian group is normal. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Assertion ablnsg G Abel NrmSGrp G = SubGrp G

Proof

Step Hyp Ref Expression
1 eqid Base G = Base G
2 eqid + G = + G
3 1 2 ablcom G Abel y Base G z Base G y + G z = z + G y
4 3 3expb G Abel y Base G z Base G y + G z = z + G y
5 4 eleq1d G Abel y Base G z Base G y + G z x z + G y x
6 5 ralrimivva G Abel y Base G z Base G y + G z x z + G y x
7 1 2 isnsg x NrmSGrp G x SubGrp G y Base G z Base G y + G z x z + G y x
8 7 rbaib y Base G z Base G y + G z x z + G y x x NrmSGrp G x SubGrp G
9 6 8 syl G Abel x NrmSGrp G x SubGrp G
10 9 eqrdv G Abel NrmSGrp G = SubGrp G