Metamath Proof Explorer


Theorem ablo32

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 X = ran G
Assertion ablo32 G AbelOp A X B X C X A G B G C = A G C G B

Proof

Step Hyp Ref Expression
1 ablcom.1 X = ran G
2 1 ablocom G AbelOp B X C X B G C = C G B
3 2 3adant3r1 G AbelOp A X B X C X B G C = C G B
4 3 oveq2d G AbelOp A X B X C X A G B G C = A G C G B
5 ablogrpo G AbelOp G GrpOp
6 1 grpoass G GrpOp A X B X C X A G B G C = A G B G C
7 5 6 sylan G AbelOp A X B X C X A G B G C = A G B G C
8 3ancomb A X B X C X A X C X B X
9 1 grpoass G GrpOp A X C X B X A G C G B = A G C G B
10 8 9 sylan2b G GrpOp A X B X C X A G C G B = A G C G B
11 5 10 sylan G AbelOp A X B X C X A G C G B = A G C G B
12 4 7 11 3eqtr4d G AbelOp A X B X C X A G B G C = A G C G B