Metamath Proof Explorer


Theorem ablo4

Description: Commutative/associative law for Abelian groups. (Contributed by NM, 26-Apr-2007) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 X = ran G
Assertion ablo4 G AbelOp A X B X C X D X A G B G C G D = A G C G B G D

Proof

Step Hyp Ref Expression
1 ablcom.1 X = ran G
2 simprll G AbelOp A X B X C X D X A X
3 simprlr G AbelOp A X B X C X D X B X
4 simprrl G AbelOp A X B X C X D X C X
5 2 3 4 3jca G AbelOp A X B X C X D X A X B X C X
6 1 ablo32 G AbelOp A X B X C X A G B G C = A G C G B
7 5 6 syldan G AbelOp A X B X C X D X A G B G C = A G C G B
8 7 oveq1d G AbelOp A X B X C X D X A G B G C G D = A G C G B G D
9 ablogrpo G AbelOp G GrpOp
10 1 grpocl G GrpOp A X B X A G B X
11 10 3expb G GrpOp A X B X A G B X
12 11 adantrr G GrpOp A X B X C X D X A G B X
13 simprrl G GrpOp A X B X C X D X C X
14 simprrr G GrpOp A X B X C X D X D X
15 12 13 14 3jca G GrpOp A X B X C X D X A G B X C X D X
16 1 grpoass G GrpOp A G B X C X D X A G B G C G D = A G B G C G D
17 15 16 syldan G GrpOp A X B X C X D X A G B G C G D = A G B G C G D
18 9 17 sylan G AbelOp A X B X C X D X A G B G C G D = A G B G C G D
19 1 grpocl G GrpOp A X C X A G C X
20 19 3expb G GrpOp A X C X A G C X
21 20 adantrlr G GrpOp A X B X C X A G C X
22 21 adantrrr G GrpOp A X B X C X D X A G C X
23 simprlr G GrpOp A X B X C X D X B X
24 22 23 14 3jca G GrpOp A X B X C X D X A G C X B X D X
25 1 grpoass G GrpOp A G C X B X D X A G C G B G D = A G C G B G D
26 24 25 syldan G GrpOp A X B X C X D X A G C G B G D = A G C G B G D
27 9 26 sylan G AbelOp A X B X C X D X A G C G B G D = A G C G B G D
28 8 18 27 3eqtr3d G AbelOp A X B X C X D X A G B G C G D = A G C G B G D
29 28 3impb G AbelOp A X B X C X D X A G B G C G D = A G C G B G D