Metamath Proof Explorer


Theorem ablo4pnp

Description: A commutative/associative law for Abelian groups. (Contributed by Jeff Madsen, 11-Jun-2010)

Ref Expression
Hypotheses abl4pnp.1 X = ran G
abl4pnp.2 D = / g G
Assertion ablo4pnp G AbelOp A X B X C X F X A G B D C G F = A D C G B D F

Proof

Step Hyp Ref Expression
1 abl4pnp.1 X = ran G
2 abl4pnp.2 D = / g G
3 df-3an A X B X C X A X B X C X
4 1 2 ablomuldiv G AbelOp A X B X C X A G B D C = A D C G B
5 3 4 sylan2br G AbelOp A X B X C X A G B D C = A D C G B
6 5 adantrrr G AbelOp A X B X C X F X A G B D C = A D C G B
7 6 oveq1d G AbelOp A X B X C X F X A G B D C D F = A D C G B D F
8 ablogrpo G AbelOp G GrpOp
9 1 grpocl G GrpOp A X B X A G B X
10 9 3expib G GrpOp A X B X A G B X
11 8 10 syl G AbelOp A X B X A G B X
12 11 anim1d G AbelOp A X B X C X F X A G B X C X F X
13 3anass A G B X C X F X A G B X C X F X
14 12 13 syl6ibr G AbelOp A X B X C X F X A G B X C X F X
15 14 imp G AbelOp A X B X C X F X A G B X C X F X
16 1 2 ablodivdiv4 G AbelOp A G B X C X F X A G B D C D F = A G B D C G F
17 15 16 syldan G AbelOp A X B X C X F X A G B D C D F = A G B D C G F
18 1 2 grpodivcl G GrpOp A X C X A D C X
19 18 3expib G GrpOp A X C X A D C X
20 19 anim1d G GrpOp A X C X B X F X A D C X B X F X
21 an4 A X B X C X F X A X C X B X F X
22 3anass A D C X B X F X A D C X B X F X
23 20 21 22 3imtr4g G GrpOp A X B X C X F X A D C X B X F X
24 23 imp G GrpOp A X B X C X F X A D C X B X F X
25 1 2 grpomuldivass G GrpOp A D C X B X F X A D C G B D F = A D C G B D F
26 24 25 syldan G GrpOp A X B X C X F X A D C G B D F = A D C G B D F
27 8 26 sylan G AbelOp A X B X C X F X A D C G B D F = A D C G B D F
28 7 17 27 3eqtr3d G AbelOp A X B X C X F X A G B D C G F = A D C G B D F