Metamath Proof Explorer


Theorem ablocom

Description: An Abelian group operation is commutative. (Contributed by NM, 2-Nov-2006) (New usage is discouraged.)

Ref Expression
Hypothesis ablcom.1 X = ran G
Assertion ablocom G AbelOp A X B X A G B = B G A

Proof

Step Hyp Ref Expression
1 ablcom.1 X = ran G
2 1 isablo G AbelOp G GrpOp x X y X x G y = y G x
3 2 simprbi G AbelOp x X y X x G y = y G x
4 oveq1 x = A x G y = A G y
5 oveq2 x = A y G x = y G A
6 4 5 eqeq12d x = A x G y = y G x A G y = y G A
7 oveq2 y = B A G y = A G B
8 oveq1 y = B y G A = B G A
9 7 8 eqeq12d y = B A G y = y G A A G B = B G A
10 6 9 rspc2v A X B X x X y X x G y = y G x A G B = B G A
11 3 10 syl5com G AbelOp A X B X A G B = B G A
12 11 3impib G AbelOp A X B X A G B = B G A