Metamath Proof Explorer


Theorem ablodiv32

Description: Swap the second and third terms in a double division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablodiv32 G AbelOp A X B X C X A D B D C = A D C D B

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 1 ablocom G AbelOp B X C X B G C = C G B
4 3 3adant3r1 G AbelOp A X B X C X B G C = C G B
5 4 oveq2d G AbelOp A X B X C X A D B G C = A D C G B
6 1 2 ablodivdiv4 G AbelOp A X B X C X A D B D C = A D B G C
7 3ancomb A X B X C X A X C X B X
8 1 2 ablodivdiv4 G AbelOp A X C X B X A D C D B = A D C G B
9 7 8 sylan2b G AbelOp A X B X C X A D C D B = A D C G B
10 5 6 9 3eqtr4d G AbelOp A X B X C X A D B D C = A D C D B