Metamath Proof Explorer


Theorem ablodivdiv

Description: Law for double group division. (Contributed by NM, 29-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablodivdiv G AbelOp A X B X C X A D B D C = A D B G C

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 ablogrpo G AbelOp G GrpOp
4 1 2 grpodivdiv G GrpOp A X B X C X A D B D C = A G C D B
5 3 4 sylan G AbelOp A X B X C X A D B D C = A G C D B
6 3ancomb A X B X C X A X C X B X
7 1 2 grpomuldivass G GrpOp A X C X B X A G C D B = A G C D B
8 3 7 sylan G AbelOp A X C X B X A G C D B = A G C D B
9 1 2 ablomuldiv G AbelOp A X C X B X A G C D B = A D B G C
10 8 9 eqtr3d G AbelOp A X C X B X A G C D B = A D B G C
11 6 10 sylan2b G AbelOp A X B X C X A G C D B = A D B G C
12 5 11 eqtrd G AbelOp A X B X C X A D B D C = A D B G C