Metamath Proof Explorer


Theorem ablomuldiv

Description: Law for group multiplication and division. (Contributed by NM, 15-Feb-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablomuldiv G AbelOp A X B X C X A G B D C = A D C G B

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 1 ablocom G AbelOp A X B X A G B = B G A
4 3 3adant3r3 G AbelOp A X B X C X A G B = B G A
5 4 oveq1d G AbelOp A X B X C X A G B D C = B G A D C
6 3ancoma A X B X C X B X A X C X
7 ablogrpo G AbelOp G GrpOp
8 1 2 grpomuldivass G GrpOp B X A X C X B G A D C = B G A D C
9 7 8 sylan G AbelOp B X A X C X B G A D C = B G A D C
10 6 9 sylan2b G AbelOp A X B X C X B G A D C = B G A D C
11 simpr2 G AbelOp A X B X C X B X
12 1 2 grpodivcl G GrpOp A X C X A D C X
13 7 12 syl3an1 G AbelOp A X C X A D C X
14 13 3adant3r2 G AbelOp A X B X C X A D C X
15 11 14 jca G AbelOp A X B X C X B X A D C X
16 1 ablocom G AbelOp B X A D C X B G A D C = A D C G B
17 16 3expb G AbelOp B X A D C X B G A D C = A D C G B
18 15 17 syldan G AbelOp A X B X C X B G A D C = A D C G B
19 5 10 18 3eqtrd G AbelOp A X B X C X A G B D C = A D C G B