Metamath Proof Explorer


Theorem ablonncan

Description: Cancellation law for group division. ( nncan analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablonncan G AbelOp A X B X A D A D B = B

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 id A X A X B X A X A X B X
4 3 3anidm12 A X B X A X A X B X
5 1 2 ablodivdiv G AbelOp A X A X B X A D A D B = A D A G B
6 4 5 sylan2 G AbelOp A X B X A D A D B = A D A G B
7 6 3impb G AbelOp A X B X A D A D B = A D A G B
8 ablogrpo G AbelOp G GrpOp
9 eqid GId G = GId G
10 1 2 9 grpodivid G GrpOp A X A D A = GId G
11 8 10 sylan G AbelOp A X A D A = GId G
12 11 3adant3 G AbelOp A X B X A D A = GId G
13 12 oveq1d G AbelOp A X B X A D A G B = GId G G B
14 1 9 grpolid G GrpOp B X GId G G B = B
15 8 14 sylan G AbelOp B X GId G G B = B
16 15 3adant2 G AbelOp A X B X GId G G B = B
17 7 13 16 3eqtrd G AbelOp A X B X A D A D B = B