Metamath Proof Explorer


Theorem ablonnncan1

Description: Cancellation law for group division. ( nnncan1 analog.) (Contributed by NM, 7-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses abldiv.1 X = ran G
abldiv.3 D = / g G
Assertion ablonnncan1 G AbelOp A X B X C X A D B D A D C = C D B

Proof

Step Hyp Ref Expression
1 abldiv.1 X = ran G
2 abldiv.3 D = / g G
3 simpr1 G AbelOp A X B X C X A X
4 simpr2 G AbelOp A X B X C X B X
5 ablogrpo G AbelOp G GrpOp
6 1 2 grpodivcl G GrpOp A X C X A D C X
7 5 6 syl3an1 G AbelOp A X C X A D C X
8 7 3adant3r2 G AbelOp A X B X C X A D C X
9 3 4 8 3jca G AbelOp A X B X C X A X B X A D C X
10 1 2 ablodiv32 G AbelOp A X B X A D C X A D B D A D C = A D A D C D B
11 9 10 syldan G AbelOp A X B X C X A D B D A D C = A D A D C D B
12 1 2 ablonncan G AbelOp A X C X A D A D C = C
13 12 3adant3r2 G AbelOp A X B X C X A D A D C = C
14 13 oveq1d G AbelOp A X B X C X A D A D C D B = C D B
15 11 14 eqtrd G AbelOp A X B X C X A D B D A D C = C D B