Metamath Proof Explorer


Theorem ablpncan2

Description: Cancellation law for subtraction. (Contributed by NM, 2-Oct-2014)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
Assertion ablpncan2 G Abel X B Y B X + ˙ Y - ˙ X = Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 simp1 G Abel X B Y B G Abel
5 simp2 G Abel X B Y B X B
6 simp3 G Abel X B Y B Y B
7 1 2 3 abladdsub G Abel X B Y B X B X + ˙ Y - ˙ X = X - ˙ X + ˙ Y
8 4 5 6 5 7 syl13anc G Abel X B Y B X + ˙ Y - ˙ X = X - ˙ X + ˙ Y
9 ablgrp G Abel G Grp
10 4 9 syl G Abel X B Y B G Grp
11 eqid 0 G = 0 G
12 1 11 3 grpsubid G Grp X B X - ˙ X = 0 G
13 10 5 12 syl2anc G Abel X B Y B X - ˙ X = 0 G
14 13 oveq1d G Abel X B Y B X - ˙ X + ˙ Y = 0 G + ˙ Y
15 1 2 11 grplid G Grp Y B 0 G + ˙ Y = Y
16 10 6 15 syl2anc G Abel X B Y B 0 G + ˙ Y = Y
17 8 14 16 3eqtrd G Abel X B Y B X + ˙ Y - ˙ X = Y