Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
ablpncan3
Next ⟩
ablsubsub
Metamath Proof Explorer
Ascii
Unicode
Theorem
ablpncan3
Description:
A cancellation law for commutative groups.
(Contributed by
NM
, 23-Mar-2015)
Ref
Expression
Hypotheses
ablsubadd.b
⊢
B
=
Base
G
ablsubadd.p
⊢
+
˙
=
+
G
ablsubadd.m
⊢
-
˙
=
-
G
Assertion
ablpncan3
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
X
=
Y
Proof
Step
Hyp
Ref
Expression
1
ablsubadd.b
⊢
B
=
Base
G
2
ablsubadd.p
⊢
+
˙
=
+
G
3
ablsubadd.m
⊢
-
˙
=
-
G
4
simpl
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
G
∈
Abel
5
simprl
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
X
∈
B
6
ablgrp
⊢
G
∈
Abel
→
G
∈
Grp
7
6
adantr
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
G
∈
Grp
8
simprr
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
Y
∈
B
9
1
3
grpsubcl
⊢
G
∈
Grp
∧
Y
∈
B
∧
X
∈
B
→
Y
-
˙
X
∈
B
10
7
8
5
9
syl3anc
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
Y
-
˙
X
∈
B
11
1
2
ablcom
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
-
˙
X
∈
B
→
X
+
˙
Y
-
˙
X
=
Y
-
˙
X
+
˙
X
12
4
5
10
11
syl3anc
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
X
=
Y
-
˙
X
+
˙
X
13
1
2
3
grpnpcan
⊢
G
∈
Grp
∧
Y
∈
B
∧
X
∈
B
→
Y
-
˙
X
+
˙
X
=
Y
14
7
8
5
13
syl3anc
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
Y
-
˙
X
+
˙
X
=
Y
15
12
14
eqtrd
⊢
G
∈
Abel
∧
X
∈
B
∧
Y
∈
B
→
X
+
˙
Y
-
˙
X
=
Y