Metamath Proof Explorer


Theorem ablpncan3

Description: A cancellation law for commutative groups. (Contributed by NM, 23-Mar-2015)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
Assertion ablpncan3 G Abel X B Y B X + ˙ Y - ˙ X = Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 simpl G Abel X B Y B G Abel
5 simprl G Abel X B Y B X B
6 ablgrp G Abel G Grp
7 6 adantr G Abel X B Y B G Grp
8 simprr G Abel X B Y B Y B
9 1 3 grpsubcl G Grp Y B X B Y - ˙ X B
10 7 8 5 9 syl3anc G Abel X B Y B Y - ˙ X B
11 1 2 ablcom G Abel X B Y - ˙ X B X + ˙ Y - ˙ X = Y - ˙ X + ˙ X
12 4 5 10 11 syl3anc G Abel X B Y B X + ˙ Y - ˙ X = Y - ˙ X + ˙ X
13 1 2 3 grpnpcan G Grp Y B X B Y - ˙ X + ˙ X = Y
14 7 8 5 13 syl3anc G Abel X B Y B Y - ˙ X + ˙ X = Y
15 12 14 eqtrd G Abel X B Y B X + ˙ Y - ˙ X = Y