Description: If two structures have the same group components (properties), one is an Abelian group iff the other one is. (Contributed by NM, 6-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ablpropd.1 | ||
| ablpropd.2 | |||
| ablpropd.3 | |||
| Assertion | ablpropd |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ablpropd.1 | ||
| 2 | ablpropd.2 | ||
| 3 | ablpropd.3 | ||
| 4 | 1 2 3 | grppropd | |
| 5 | 1 2 3 | cmnpropd | |
| 6 | 4 5 | anbi12d | |
| 7 | isabl | ||
| 8 | isabl | ||
| 9 | 6 7 8 | 3bitr4g |