Step |
Hyp |
Ref |
Expression |
1 |
|
ablsubadd.b |
|
2 |
|
ablsubadd.p |
|
3 |
|
ablsubadd.m |
|
4 |
|
ablgrp |
|
5 |
4
|
3ad2ant1 |
|
6 |
|
simp2l |
|
7 |
|
simp2r |
|
8 |
1 2
|
grpcl |
|
9 |
5 6 7 8
|
syl3anc |
|
10 |
|
simp3l |
|
11 |
|
simp3r |
|
12 |
1 2
|
grpcl |
|
13 |
5 10 11 12
|
syl3anc |
|
14 |
|
eqid |
|
15 |
1 2 14 3
|
grpsubval |
|
16 |
9 13 15
|
syl2anc |
|
17 |
|
ablcmn |
|
18 |
17
|
3ad2ant1 |
|
19 |
|
simp2 |
|
20 |
1 14
|
grpinvcl |
|
21 |
5 10 20
|
syl2anc |
|
22 |
1 14
|
grpinvcl |
|
23 |
5 11 22
|
syl2anc |
|
24 |
1 2
|
cmn4 |
|
25 |
18 19 21 23 24
|
syl112anc |
|
26 |
|
simp1 |
|
27 |
1 2 14
|
ablinvadd |
|
28 |
26 10 11 27
|
syl3anc |
|
29 |
28
|
oveq2d |
|
30 |
1 2 14 3
|
grpsubval |
|
31 |
6 10 30
|
syl2anc |
|
32 |
1 2 14 3
|
grpsubval |
|
33 |
7 11 32
|
syl2anc |
|
34 |
31 33
|
oveq12d |
|
35 |
25 29 34
|
3eqtr4d |
|
36 |
16 35
|
eqtrd |
|