| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ablsubadd.b |  | 
						
							| 2 |  | ablsubadd.p |  | 
						
							| 3 |  | ablsubadd.m |  | 
						
							| 4 |  | ablgrp |  | 
						
							| 5 | 4 | 3ad2ant1 |  | 
						
							| 6 |  | simp2l |  | 
						
							| 7 |  | simp2r |  | 
						
							| 8 | 1 2 | grpcl |  | 
						
							| 9 | 5 6 7 8 | syl3anc |  | 
						
							| 10 |  | simp3l |  | 
						
							| 11 |  | simp3r |  | 
						
							| 12 | 1 2 | grpcl |  | 
						
							| 13 | 5 10 11 12 | syl3anc |  | 
						
							| 14 |  | eqid |  | 
						
							| 15 | 1 2 14 3 | grpsubval |  | 
						
							| 16 | 9 13 15 | syl2anc |  | 
						
							| 17 |  | ablcmn |  | 
						
							| 18 | 17 | 3ad2ant1 |  | 
						
							| 19 |  | simp2 |  | 
						
							| 20 | 1 14 | grpinvcl |  | 
						
							| 21 | 5 10 20 | syl2anc |  | 
						
							| 22 | 1 14 | grpinvcl |  | 
						
							| 23 | 5 11 22 | syl2anc |  | 
						
							| 24 | 1 2 | cmn4 |  | 
						
							| 25 | 18 19 21 23 24 | syl112anc |  | 
						
							| 26 |  | simp1 |  | 
						
							| 27 | 1 2 14 | ablinvadd |  | 
						
							| 28 | 26 10 11 27 | syl3anc |  | 
						
							| 29 | 28 | oveq2d |  | 
						
							| 30 | 1 2 14 3 | grpsubval |  | 
						
							| 31 | 6 10 30 | syl2anc |  | 
						
							| 32 | 1 2 14 3 | grpsubval |  | 
						
							| 33 | 7 11 32 | syl2anc |  | 
						
							| 34 | 31 33 | oveq12d |  | 
						
							| 35 | 25 29 34 | 3eqtr4d |  | 
						
							| 36 | 16 35 | eqtrd |  |