Metamath Proof Explorer


Theorem ablsubadd23

Description: Commutative/associative law for addition and subtraction in abelian groups. ( subadd23d analog.) (Contributed by AV, 2-Mar-2025)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
Assertion ablsubadd23 G Abel X B Y B Z B X - ˙ Y + ˙ Z = X + ˙ Z - ˙ Y

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 3ancomb X B Y B Z B X B Z B Y B
5 4 biimpi X B Y B Z B X B Z B Y B
6 1 2 3 abladdsub G Abel X B Z B Y B X + ˙ Z - ˙ Y = X - ˙ Y + ˙ Z
7 5 6 sylan2 G Abel X B Y B Z B X + ˙ Z - ˙ Y = X - ˙ Y + ˙ Z
8 ablgrp G Abel G Grp
9 1 2 3 grpaddsubass G Grp X B Z B Y B X + ˙ Z - ˙ Y = X + ˙ Z - ˙ Y
10 8 5 9 syl2an G Abel X B Y B Z B X + ˙ Z - ˙ Y = X + ˙ Z - ˙ Y
11 7 10 eqtr3d G Abel X B Y B Z B X - ˙ Y + ˙ Z = X + ˙ Z - ˙ Y