Metamath Proof Explorer


Theorem ablsubsub4

Description: Law for double subtraction. (Contributed by NM, 7-Apr-2015)

Ref Expression
Hypotheses ablsubadd.b B = Base G
ablsubadd.p + ˙ = + G
ablsubadd.m - ˙ = - G
ablsubsub.g φ G Abel
ablsubsub.x φ X B
ablsubsub.y φ Y B
ablsubsub.z φ Z B
Assertion ablsubsub4 φ X - ˙ Y - ˙ Z = X - ˙ Y + ˙ Z

Proof

Step Hyp Ref Expression
1 ablsubadd.b B = Base G
2 ablsubadd.p + ˙ = + G
3 ablsubadd.m - ˙ = - G
4 ablsubsub.g φ G Abel
5 ablsubsub.x φ X B
6 ablsubsub.y φ Y B
7 ablsubsub.z φ Z B
8 ablgrp G Abel G Grp
9 4 8 syl φ G Grp
10 1 3 grpsubcl G Grp X B Y B X - ˙ Y B
11 9 5 6 10 syl3anc φ X - ˙ Y B
12 eqid inv g G = inv g G
13 1 2 12 3 grpsubval X - ˙ Y B Z B X - ˙ Y - ˙ Z = X - ˙ Y + ˙ inv g G Z
14 11 7 13 syl2anc φ X - ˙ Y - ˙ Z = X - ˙ Y + ˙ inv g G Z
15 1 12 grpinvcl G Grp Z B inv g G Z B
16 9 7 15 syl2anc φ inv g G Z B
17 1 2 3 4 5 6 16 ablsubsub φ X - ˙ Y - ˙ inv g G Z = X - ˙ Y + ˙ inv g G Z
18 1 2 3 12 9 6 7 grpsubinv φ Y - ˙ inv g G Z = Y + ˙ Z
19 18 oveq2d φ X - ˙ Y - ˙ inv g G Z = X - ˙ Y + ˙ Z
20 14 17 19 3eqtr2d φ X - ˙ Y - ˙ Z = X - ˙ Y + ˙ Z