Metamath Proof Explorer


Theorem abnex

Description: Sufficient condition for a class abstraction to be a proper class. Lemma for snnex and pwnex . See the comment of abnexg . (Contributed by BJ, 2-May-2021)

Ref Expression
Assertion abnex x F V x F ¬ y | x y = F V

Proof

Step Hyp Ref Expression
1 vprc ¬ V V
2 alral x F V x F x V F V x F
3 rexv x V y = F x y = F
4 3 bicomi x y = F x V y = F
5 4 abbii y | x y = F = y | x V y = F
6 5 eleq1i y | x y = F V y | x V y = F V
7 6 biimpi y | x y = F V y | x V y = F V
8 abnexg x V F V x F y | x V y = F V V V
9 2 7 8 syl2im x F V x F y | x y = F V V V
10 1 9 mtoi x F V x F ¬ y | x y = F V