Metamath Proof Explorer


Theorem abnotataxb

Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotataxb.1 ¬φ
abnotataxb.2 ψ
Assertion abnotataxb φψ

Proof

Step Hyp Ref Expression
1 abnotataxb.1 ¬φ
2 abnotataxb.2 ψ
3 2 1 pm3.2i ψ¬φ
4 3 olci φ¬ψψ¬φ
5 xor ¬φψφ¬ψψ¬φ
6 4 5 mpbir ¬φψ
7 df-xor φψ¬φψ
8 6 7 mpbir φψ