Metamath Proof Explorer
Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)
|
|
Ref |
Expression |
|
Hypotheses |
abnotataxb.1 |
|
|
|
abnotataxb.2 |
|
|
Assertion |
abnotataxb |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abnotataxb.1 |
|
2 |
|
abnotataxb.2 |
|
3 |
2 1
|
pm3.2i |
|
4 |
3
|
olci |
|
5 |
|
xor |
|
6 |
4 5
|
mpbir |
|
7 |
|
df-xor |
|
8 |
6 7
|
mpbir |
|