Metamath Proof Explorer


Theorem abnotataxb

Description: Assuming not a, b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotataxb.1 ¬ φ
abnotataxb.2 ψ
Assertion abnotataxb φ ψ

Proof

Step Hyp Ref Expression
1 abnotataxb.1 ¬ φ
2 abnotataxb.2 ψ
3 2 1 pm3.2i ψ ¬ φ
4 3 olci φ ¬ ψ ψ ¬ φ
5 xor ¬ φ ψ φ ¬ ψ ψ ¬ φ
6 4 5 mpbir ¬ φ ψ
7 df-xor φ ψ ¬ φ ψ
8 6 7 mpbir φ ψ