Metamath Proof Explorer


Theorem abnotbtaxb

Description: Assuming a, not b, there exists a proof a-xor-b.) (Contributed by Jarvin Udandy, 31-Aug-2016)

Ref Expression
Hypotheses abnotbtaxb.1 φ
abnotbtaxb.2 ¬ ψ
Assertion abnotbtaxb φ ψ

Proof

Step Hyp Ref Expression
1 abnotbtaxb.1 φ
2 abnotbtaxb.2 ¬ ψ
3 xor3 ¬ φ ψ φ ¬ ψ
4 pm5.1 φ ¬ ψ φ ¬ ψ
5 ibibr φ ¬ ψ φ ¬ ψ φ ¬ ψ φ ¬ ψ φ ¬ ψ
6 4 5 mpbi φ ¬ ψ φ ¬ ψ φ ¬ ψ
7 1 2 6 mp2an φ ¬ ψ φ ¬ ψ
8 3 7 bitri ¬ φ ψ φ ¬ ψ
9 1 2 8 mpbir2an ¬ φ ψ
10 df-xor φ ψ ¬ φ ψ
11 9 10 mpbir φ ψ