Metamath Proof Explorer


Theorem abrexex2

Description: Existence of an existentially restricted class abstraction. ph normally has free-variable parameters x and y . See also abrexex . (Contributed by NM, 12-Sep-2004)

Ref Expression
Hypotheses abrexex2.1 A V
abrexex2.2 y | φ V
Assertion abrexex2 y | x A φ V

Proof

Step Hyp Ref Expression
1 abrexex2.1 A V
2 abrexex2.2 y | φ V
3 2 rgenw x A y | φ V
4 abrexex2g A V x A y | φ V y | x A φ V
5 1 3 4 mp2an y | x A φ V