Metamath Proof Explorer


Theorem abrexfi

Description: An image set from a finite set is finite. (Contributed by Mario Carneiro, 13-Feb-2014)

Ref Expression
Assertion abrexfi A Fin y | x A y = B Fin

Proof

Step Hyp Ref Expression
1 eqid x A B = x A B
2 1 rnmpt ran x A B = y | x A y = B
3 mptfi A Fin x A B Fin
4 rnfi x A B Fin ran x A B Fin
5 3 4 syl A Fin ran x A B Fin
6 2 5 eqeltrrid A Fin y | x A y = B Fin