Metamath Proof Explorer


Theorem abrexss

Description: A necessary condition for an image set to be a subset. (Contributed by Thierry Arnoux, 6-Feb-2017)

Ref Expression
Hypothesis abrexss.1 _ x C
Assertion abrexss x A B C y | x A y = B C

Proof

Step Hyp Ref Expression
1 abrexss.1 _ x C
2 nfra1 x x A B C
3 1 nfcri x z C
4 eleq1 z = B z C B C
5 vex z V
6 5 a1i x A B C z V
7 rspa x A B C x A B C
8 2 3 4 6 7 elabreximd x A B C z y | x A y = B z C
9 8 ex x A B C z y | x A y = B z C
10 9 ssrdv x A B C y | x A y = B C