Metamath Proof Explorer


Theorem abs2dif

Description: Difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion abs2dif A B A B A B

Proof

Step Hyp Ref Expression
1 subid1 A A 0 = A
2 1 fveq2d A A 0 = A
3 subid1 B B 0 = B
4 3 fveq2d B B 0 = B
5 2 4 oveqan12d A B A 0 B 0 = A B
6 0cn 0
7 abs3dif A 0 B A 0 A B + B 0
8 6 7 mp3an2 A B A 0 A B + B 0
9 subcl A 0 A 0
10 6 9 mpan2 A A 0
11 abscl A 0 A 0
12 10 11 syl A A 0
13 subcl B 0 B 0
14 6 13 mpan2 B B 0
15 abscl B 0 B 0
16 14 15 syl B B 0
17 12 16 anim12i A B A 0 B 0
18 subcl A B A B
19 abscl A B A B
20 18 19 syl A B A B
21 df-3an A 0 B 0 A B A 0 B 0 A B
22 17 20 21 sylanbrc A B A 0 B 0 A B
23 lesubadd A 0 B 0 A B A 0 B 0 A B A 0 A B + B 0
24 22 23 syl A B A 0 B 0 A B A 0 A B + B 0
25 8 24 mpbird A B A 0 B 0 A B
26 5 25 eqbrtrrd A B A B A B