Metamath Proof Explorer


Theorem abs2dif2

Description: Difference of absolute values. (Contributed by Mario Carneiro, 14-Apr-2016)

Ref Expression
Assertion abs2dif2 A B A B A + B

Proof

Step Hyp Ref Expression
1 negcl B B
2 abstri A B A + B A + B
3 1 2 sylan2 A B A + B A + B
4 negsub A B A + B = A B
5 4 fveq2d A B A + B = A B
6 absneg B B = B
7 6 adantl A B B = B
8 7 oveq2d A B A + B = A + B
9 3 5 8 3brtr3d A B A B A + B