Metamath Proof Explorer


Theorem abs2dif2d

Description: Difference of absolute values. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
abssubd.2 φ B
Assertion abs2dif2d φ A B A + B

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abssubd.2 φ B
3 abs2dif2 A B A B A + B
4 1 2 3 syl2anc φ A B A + B