Metamath Proof Explorer


Theorem abs2difabs

Description: Absolute value of difference of absolute values. (Contributed by Paul Chapman, 7-Sep-2007)

Ref Expression
Assertion abs2difabs A B A B A B

Proof

Step Hyp Ref Expression
1 abs2dif B A B A B A
2 1 ancoms A B B A B A
3 abscl A A
4 3 recnd A A
5 abscl B B
6 5 recnd B B
7 negsubdi2 A B A B = B A
8 4 6 7 syl2an A B A B = B A
9 abssub A B A B = B A
10 2 8 9 3brtr4d A B A B A B
11 abs2dif A B A B A B
12 resubcl A B A B
13 3 5 12 syl2an A B A B
14 subcl A B A B
15 abscl A B A B
16 14 15 syl A B A B
17 absle A B A B A B A B A B A B A B A B
18 13 16 17 syl2anc A B A B A B A B A B A B A B
19 lenegcon1 A B A B A B A B A B A B
20 13 16 19 syl2anc A B A B A B A B A B
21 20 anbi1d A B A B A B A B A B A B A B A B A B
22 18 21 bitr4d A B A B A B A B A B A B A B
23 10 11 22 mpbir2and A B A B A B