| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abs2dif |
|
| 2 |
1
|
ancoms |
|
| 3 |
|
abscl |
|
| 4 |
3
|
recnd |
|
| 5 |
|
abscl |
|
| 6 |
5
|
recnd |
|
| 7 |
|
negsubdi2 |
|
| 8 |
4 6 7
|
syl2an |
|
| 9 |
|
abssub |
|
| 10 |
2 8 9
|
3brtr4d |
|
| 11 |
|
abs2dif |
|
| 12 |
|
resubcl |
|
| 13 |
3 5 12
|
syl2an |
|
| 14 |
|
subcl |
|
| 15 |
|
abscl |
|
| 16 |
14 15
|
syl |
|
| 17 |
|
absle |
|
| 18 |
13 16 17
|
syl2anc |
|
| 19 |
|
lenegcon1 |
|
| 20 |
13 16 19
|
syl2anc |
|
| 21 |
20
|
anbi1d |
|
| 22 |
18 21
|
bitr4d |
|
| 23 |
10 11 22
|
mpbir2and |
|