Metamath Proof Explorer


Theorem abs3dif

Description: Absolute value of differences around common element. (Contributed by FL, 9-Oct-2006)

Ref Expression
Assertion abs3dif A B C A B A C + C B

Proof

Step Hyp Ref Expression
1 npncan A C B A C + C - B = A B
2 1 3com23 A B C A C + C - B = A B
3 2 fveq2d A B C A C + C - B = A B
4 subcl A C A C
5 4 3adant2 A B C A C
6 subcl C B C B
7 6 ancoms B C C B
8 7 3adant1 A B C C B
9 abstri A C C B A C + C - B A C + C B
10 5 8 9 syl2anc A B C A C + C - B A C + C B
11 3 10 eqbrtrrd A B C A B A C + C B