Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
abs3dif
Next ⟩
abs2dif
Metamath Proof Explorer
Ascii
Unicode
Theorem
abs3dif
Description:
Absolute value of differences around common element.
(Contributed by
FL
, 9-Oct-2006)
Ref
Expression
Assertion
abs3dif
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
≤
A
−
C
+
C
−
B
Proof
Step
Hyp
Ref
Expression
1
npncan
⊢
A
∈
ℂ
∧
C
∈
ℂ
∧
B
∈
ℂ
→
A
−
C
+
C
-
B
=
A
−
B
2
1
3com23
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
+
C
-
B
=
A
−
B
3
2
fveq2d
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
+
C
-
B
=
A
−
B
4
subcl
⊢
A
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
∈
ℂ
5
4
3adant2
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
∈
ℂ
6
subcl
⊢
C
∈
ℂ
∧
B
∈
ℂ
→
C
−
B
∈
ℂ
7
6
ancoms
⊢
B
∈
ℂ
∧
C
∈
ℂ
→
C
−
B
∈
ℂ
8
7
3adant1
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
C
−
B
∈
ℂ
9
abstri
⊢
A
−
C
∈
ℂ
∧
C
−
B
∈
ℂ
→
A
−
C
+
C
-
B
≤
A
−
C
+
C
−
B
10
5
8
9
syl2anc
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
C
+
C
-
B
≤
A
−
C
+
C
−
B
11
3
10
eqbrtrrd
⊢
A
∈
ℂ
∧
B
∈
ℂ
∧
C
∈
ℂ
→
A
−
B
≤
A
−
C
+
C
−
B