Metamath Proof Explorer


Theorem abs3difi

Description: Absolute value of differences around common element. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1 A
abssub.2 B
abs3dif.3 C
Assertion abs3difi A B A C + C B

Proof

Step Hyp Ref Expression
1 absvalsqi.1 A
2 abssub.2 B
3 abs3dif.3 C
4 abs3dif A B C A B A C + C B
5 1 2 3 4 mp3an A B A C + C B