Metamath Proof Explorer


Theorem abs3lem

Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999)

Ref Expression
Assertion abs3lem A B C D A C < D 2 C B < D 2 A B < D

Proof

Step Hyp Ref Expression
1 simplll A B C D A C < D 2 C B < D 2 A
2 simpllr A B C D A C < D 2 C B < D 2 B
3 1 2 subcld A B C D A C < D 2 C B < D 2 A B
4 abscl A B A B
5 3 4 syl A B C D A C < D 2 C B < D 2 A B
6 simplrl A B C D A C < D 2 C B < D 2 C
7 1 6 subcld A B C D A C < D 2 C B < D 2 A C
8 abscl A C A C
9 7 8 syl A B C D A C < D 2 C B < D 2 A C
10 6 2 subcld A B C D A C < D 2 C B < D 2 C B
11 abscl C B C B
12 10 11 syl A B C D A C < D 2 C B < D 2 C B
13 9 12 readdcld A B C D A C < D 2 C B < D 2 A C + C B
14 simplrr A B C D A C < D 2 C B < D 2 D
15 abs3dif A B C A B A C + C B
16 1 2 6 15 syl3anc A B C D A C < D 2 C B < D 2 A B A C + C B
17 simprl A B C D A C < D 2 C B < D 2 A C < D 2
18 simprr A B C D A C < D 2 C B < D 2 C B < D 2
19 9 12 14 17 18 lt2halvesd A B C D A C < D 2 C B < D 2 A C + C B < D
20 5 13 14 16 19 lelttrd A B C D A C < D 2 C B < D 2 A B < D
21 20 ex A B C D A C < D 2 C B < D 2 A B < D