Metamath Proof Explorer
Description: Lemma involving absolute value of differences. (Contributed by Mario
Carneiro, 29-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
abscld.1 |
|
|
|
abssubd.2 |
|
|
|
abs3difd.3 |
|
|
|
abs3lemd.4 |
|
|
|
abs3lemd.5 |
|
|
|
abs3lemd.6 |
|
|
Assertion |
abs3lemd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
abscld.1 |
|
2 |
|
abssubd.2 |
|
3 |
|
abs3difd.3 |
|
4 |
|
abs3lemd.4 |
|
5 |
|
abs3lemd.5 |
|
6 |
|
abs3lemd.6 |
|
7 |
|
abs3lem |
|
8 |
1 2 3 4 7
|
syl22anc |
|
9 |
5 6 8
|
mp2and |
|