Metamath Proof Explorer


Theorem abs3lemd

Description: Lemma involving absolute value of differences. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses abscld.1 φ A
abssubd.2 φ B
abs3difd.3 φ C
abs3lemd.4 φ D
abs3lemd.5 φ A C < D 2
abs3lemd.6 φ C B < D 2
Assertion abs3lemd φ A B < D

Proof

Step Hyp Ref Expression
1 abscld.1 φ A
2 abssubd.2 φ B
3 abs3difd.3 φ C
4 abs3lemd.4 φ D
5 abs3lemd.5 φ A C < D 2
6 abs3lemd.6 φ C B < D 2
7 abs3lem A B C D A C < D 2 C B < D 2 A B < D
8 1 2 3 4 7 syl22anc φ A C < D 2 C B < D 2 A B < D
9 5 6 8 mp2and φ A B < D