Metamath Proof Explorer


Theorem abs3lemi

Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999)

Ref Expression
Hypotheses absvalsqi.1 A
abssub.2 B
abs3dif.3 C
abs3lem.4 D
Assertion abs3lemi A C < D 2 C B < D 2 A B < D

Proof

Step Hyp Ref Expression
1 absvalsqi.1 A
2 abssub.2 B
3 abs3dif.3 C
4 abs3lem.4 D
5 1 2 3 abs3difi A B A C + C B
6 1 3 subcli A C
7 6 abscli A C
8 3 2 subcli C B
9 8 abscli C B
10 4 rehalfcli D 2
11 7 9 10 10 lt2addi A C < D 2 C B < D 2 A C + C B < D 2 + D 2
12 1 2 subcli A B
13 12 abscli A B
14 7 9 readdcli A C + C B
15 10 10 readdcli D 2 + D 2
16 13 14 15 lelttri A B A C + C B A C + C B < D 2 + D 2 A B < D 2 + D 2
17 5 11 16 sylancr A C < D 2 C B < D 2 A B < D 2 + D 2
18 10 recni D 2
19 18 2timesi 2 D 2 = D 2 + D 2
20 4 recni D
21 2cn 2
22 2ne0 2 0
23 20 21 22 divcan2i 2 D 2 = D
24 19 23 eqtr3i D 2 + D 2 = D
25 17 24 breqtrdi A C < D 2 C B < D 2 A B < D