Metamath Proof Explorer


Theorem absabv

Description: The regular absolute value function on the complex numbers is in fact an absolute value under our definition. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Assertion absabv abs AbsVal fld

Proof

Step Hyp Ref Expression
1 eqidd AbsVal fld = AbsVal fld
2 cnfldbas = Base fld
3 2 a1i = Base fld
4 cnfldadd + = + fld
5 4 a1i + = + fld
6 cnfldmul × = fld
7 6 a1i × = fld
8 cnfld0 0 = 0 fld
9 8 a1i 0 = 0 fld
10 cnring fld Ring
11 10 a1i fld Ring
12 absf abs :
13 12 a1i abs :
14 abs0 0 = 0
15 14 a1i 0 = 0
16 absgt0 x x 0 0 < x
17 16 biimpa x x 0 0 < x
18 17 3adant1 x x 0 0 < x
19 absmul x y x y = x y
20 19 ad2ant2r x x 0 y y 0 x y = x y
21 20 3adant1 x x 0 y y 0 x y = x y
22 abstri x y x + y x + y
23 22 ad2ant2r x x 0 y y 0 x + y x + y
24 23 3adant1 x x 0 y y 0 x + y x + y
25 1 3 5 7 9 11 13 15 18 21 24 isabvd abs AbsVal fld
26 25 mptru abs AbsVal fld