Step |
Hyp |
Ref |
Expression |
1 |
|
eqidd |
|
2 |
|
cnfldbas |
|
3 |
2
|
a1i |
|
4 |
|
cnfldadd |
|
5 |
4
|
a1i |
|
6 |
|
cnfldmul |
|
7 |
6
|
a1i |
|
8 |
|
cnfld0 |
|
9 |
8
|
a1i |
|
10 |
|
cnring |
|
11 |
10
|
a1i |
|
12 |
|
absf |
|
13 |
12
|
a1i |
|
14 |
|
abs0 |
|
15 |
14
|
a1i |
|
16 |
|
absgt0 |
|
17 |
16
|
biimpa |
|
18 |
17
|
3adant1 |
|
19 |
|
absmul |
|
20 |
19
|
ad2ant2r |
|
21 |
20
|
3adant1 |
|
22 |
|
abstri |
|
23 |
22
|
ad2ant2r |
|
24 |
23
|
3adant1 |
|
25 |
1 3 5 7 9 11 13 15 18 21 24
|
isabvd |
|
26 |
25
|
mptru |
|